Total No. of Questions-4]
[Total No. of Printed Pages-4

| Seat |  |
| :--- | :--- |
| No. |  |

## [5116]-203

## S.Y. B.Sc. (Computer Science) (Second Semester) EXAMINATION, 2017 <br> MATHEMATICS

## Paper I

(MTC-221 : Computational Geometry)
(2013 PATTERN)

## Time : Two Hours <br> Maximum Marks : 40

N.B. :- (i) All questions are compulsory.
(ii) Figures to the right indicate full marks.
(iii) Use of single memory, non-programmable scientific calculator is allowed.

1. Attempt any five of the following :
(a) Write the $2 \times 2$ transformation matrix [T] for reflection through the line $y=-x$. Apply it on the point $P[-25]$.
(b) Find the point of intersection at infinity for the lines :

$$
\begin{aligned}
x+y & =5 \text { and } \\
2 x+2 y & =4 .
\end{aligned}
$$

(c) Write the $3 \times 3$ transformation matrix for shearing in $z$ direction proportional to $x$ and $y$ co-ordinates by 12 and 14 units respectively.
P.T.O.
(d) Defnie control points.
(e) What are the types of oblique projection?
(f) Determine the increment in angle $\theta$ to generate equally spaced 11 points on the arc of the circle,

$$
x^{2}+y^{2}=25
$$

in second quadrant.
(g) State any two properties of Bezier curve.
2. Attempt any two of the following :
(a) If the $\Delta \mathrm{ABC}$ with vertices $\mathrm{A}[34], \mathrm{B}\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $\mathrm{C}\left[\begin{array}{ll}6 & 1\end{array}\right]$ is first reflected through X -axis and then uniformly scaled by 10 units, then find the area of the resulting $\Delta \mathrm{A}^{x} \mathrm{~B}^{x} \mathrm{C}^{x}$.
(b) Find the combined transformation matrix [T] for the following sequence of transformations :
(i) Rotation about the origin through $120^{\circ}$.
(ii) Reflection through the origin.
(iii) Shearing in Y-direction by 2 units.

Apply it on the point $\mathrm{P}[14$ 17].
(c) If the line

$$
y=m x+k
$$

is transformed to the line

$$
y^{x}=m^{x} x^{x}+k^{x}
$$

[5116]-203
under a $2 \times 2$ transformation matrix

$$
[\mathrm{T}]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then prove that :

$$
k^{x}=\frac{k(a d-b c)}{a+c m}
$$

3. Attempt any two of the following :
(a) Derive the expression for the angles $\phi$ and $\theta$ in dimetric projection.
(b) Obtain the concatenated transformation matrix [T] for the following sequence of transformations :
(i) Translation in $x, y$ and $z$ directions by 5,10 and 15 units respectively.
(ii) Perspective projection with the centre of projection at $x_{c}=4$ on $x$-axis.
(iii) Scaling in $y$-coordinate by 3 units.

Apply it on the origin $\mathrm{O}\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$.
(c) Find the angles of rotation about $x$-axis and $y$-axis so that the plane
$x+2 y+2 z=0$
coincides with the $z=0$ plane.
4. Attempt any one of the following :
(a) (i) Write the parametric equation of the Bezier curve with the control points

$$
\mathrm{B}_{0}\left[\begin{array}{ll}
-1 & 1
\end{array}\right], \mathrm{B}_{1}\left[\begin{array}{ll}
0 & 4
\end{array}\right], \mathrm{B}_{2}\left[\begin{array}{ll}
3 & 4
\end{array}\right] \text { and } \mathrm{B}_{3}\left[\begin{array}{ll}
3 & 1
\end{array}\right] .
$$

Hence find $\mathrm{P}(0.18)$ and $\mathrm{P}(0.27)$.
(ii) Develop the rear view and bottom view of the object :

$$
[\mathrm{X}]=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

(b) Generate equally spaced 4 points on the parabolic segment in the second quadrant of the parabola,

$$
y^{2}=-16 x
$$

for $-4 \leq x \leq-1$.

