Total No. of Questions—5]

[Total No. of Printed Pages—4

Seat	
No.	

[5116]-6

F.Y. B.Sc. (Computer Science) EXAMINATION, 2017

ELECTRONICS

Paper-II

(ELC-102 : Principles of Digital Electronics)

(2013 **PATTERN**)

Time: Three Hours

Maximum Marks: 80

- **N.B.** :— (i) All questions are compulsory.
 - (ii) Neat diagrams must be drawn wherver necessary.
 - (iii) Figures to the right indicate full marks.
- **1.** Attempt *all* of the following:

 $[8 \times 2 = 16]$

- (a) Give the radix of binary and hexadecimal number system.
- (b) Simplify y = ABC + AB using rules of Boolean algebra.
- (c) Find one's complement of $(9D)_{16}$.
- (d) How many control lines are required for 256: 1 multiplexer?
- (e) What do you mean by modulus of a counter ?
- (f) Write the truth table of tristate inverter.
- (g) Draw the logic symbol for positive edge triggered D-Flip-Flop and negative level triggered RS-Flip-Flop.
- (h) Distinguish between decoder and demultiplexer.

P.T.O.

2. Attempt any four of the following:

 $[4 \times 4 = 16]$

- (a) With neat logic diagram explain the working of parity generator.
- (b) Construct all basic gates using NOR gates.
- (c) With neat logic diagram explain the working of full subtractor.
- (d) Perform the following:
 - (i) $(110111)_2 \equiv (?)_{Gray}$
 - (ii) $(875)_{10} \equiv (?)_{16}$
- (e) Convert the given SOP into standard form

$$y = A\overline{B} + \overline{C}$$

(f) Subtract the following using 2's complement method.

$$(10001)_2 - (11100)_2$$

Comment on the result.

3. Attempt any four of the following:

 $[4 \times 4 = 16]$

- (a) Draw logic diagram for decimal to BCD converter. Write the truth table for the same.
- (b) Explain the working of the following circuit.

(c) Explain the working of CMOS inverter with neat diagram.

[5116]-6

- (d) With neat diagram explain working of 3-bit left shift serial in serial out shift register.
- (e) Explain the working of common cathode 7-segment display. Display 1 and 5 decimal numbers using common cathode 7-segment display.
- (f) Define the following parameters:
 - (i) Power Dissipation
 - (ii) Noise Margin
 - (iii) Switching Speed
 - (iv) Fan out.
- **4.** Attempt any four of the following:

 $[4 \times 4 = 16]$

- (a) Draw logic diagram of EX-OR gate and explain its working.
- (b) Write the truth table for the given circuit.

- (c) Explain block diagram of ALU.
- (d) Explain working of 4:1 multiplexer using NAND-NAND logic.
- (e) Explain working of 3-bit asynchronous down counter.
- (f) Show how IC 7490 can be connected for the following operation:
 - (i) MOD 7
 - (ii) MOD 3.

[5116]-6 3 P.T.O.

- **5.** Attempt any two of the following: $[2\times8=16]$
 - (A) (a) Convert the following:
 - (i) $(1101111)_2 \equiv (?)_{16}$
 - (ii) $(527)_{10} \equiv (?)_{\text{Excess-3}}$
 - (b) Simplify the Boolean expression using K-maps : $y = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C} + A\overline{B}\overline{C} + \overline{A}BC + ABC$ Draw simplified diagram.
 - (B) (a) Explain the working of 2 bit digital comparator.
 - (b) Implement the following logic using multiplexer : $y = A\bar{B}C\bar{D} + ABCD + AB\bar{C}\bar{D} + ABC\bar{D} + \bar{A}\bar{B}\bar{C}\bar{D} + A\bar{B}\bar{C}D$
 - (C) (a) Explain working of 3×4 matrix keyboard encoder.
 - (b) What is race around condition? Which Flip-Flop exhibits this condition? How can race around condition be eliminated?

[5116]-6