Total No. of Questions-5]

[Total No. of Printed Pages-4

[5116]-6

F.Y. B.Sc. (Computer Science) EXAMINATION, 2017 ELECTRONICS

Paper-II

(ELC-102 : Principles of Digital Electronics)
(2013 PATTERN)
Time : Three Hours Maximum Marks : 80
N.B. :- (i) All questions are compulsory.
(ii) Neat diagrams must be drawn wherver necessary.
(iii) Figures to the right indicate full marks.

1. Attempt all of the following :
(a) Give the radix of binary and hexadecimal number system.
(b) Simplify $y=\mathrm{ABC}+\mathrm{AB}$ using rules of Boolean algebra.
(c) Find one's complement of (9D) 16 .
(d) How many control lines are required for 256: 1 multiplexer?
(e) What do you mean by modulus of a counter ?
(f) Write the truth table of tristate inverter.
(g) Draw the logic symbol for positive edge triggered D-Flip-Flop and negative level triggered RS-Flip-Flop.
(h) Distinguish between decoder and demultiplexer.
P.T.O.
2. Attempt any four of the following :
(a) With neat logic diagram explain the working of parity generator.
(b) Construct all basic gates using NOR gates.
(c) With neat logic diagram explain the working of full subtractor.
(d) Perform the following :
(i) $\quad(110111)_{2} \equiv\left({ }^{(?)}\right.$ Gray
(ii) $(875)_{10} \equiv\left({ }^{(?)}{ }_{16}\right.$
(e) Convert the given SOP into standard form

$$
y=\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{C}}
$$

(f) Subtract the following using 2's complement method.

$$
(10001)_{2}-(11100)_{2}
$$

Comment on the result.
3. Attempt any four of the following :
(a) Draw logic diagram for decimal to BCD converter. Write the truth table for the same.
(b) Explain the working of the following circuit.

(c) Explain the working of CMOS inverter with neat diagram.
(d) With neat diagram explain working of 3-bit left shift serial in serial out shift register.
(e) Explain the working of common cathode 7-segment display. Display 1 and 5 decimal numbers using common cathode 7 -segment display.
(f) Define the following parameters :
(i) Power Dissipation
(ii) Noise Margin
(iii) Switching Speed
(iv) Fan out.
4. Attempt any four of the following :
(a) Draw logic diagram of EX-OR gate and explain its working.
(b) Write the truth table for the given circuit.

(c) Explain block diagram of ALU.
(d) Explain working of 4 : 1 multiplexer using NAND-NAND logic.
(e) Explain working of 3-bit asynchronous down counter.
(f) Show how IC 7490 can be connected for the following operation :
(i) \quad MOD 7
(ii) MOD 3.
P.T.O.
5. Attempt any two of the following :
(A) (a) Convert the following :
(i) $\quad(1101111)_{2} \equiv(?)_{16}$
(ii) $(527)_{10} \equiv\left({ }^{(?)}{ }_{\text {Excess-3 }}\right.$
(b) Simplify the Boolean expression using K-maps : $y=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{ABC}$

Draw simplified diagram.
(B) (a) Explain the working of 2 bit digital comparator.
(b) Implement the following logic using multiplexer :

$$
y=\mathrm{A} \overline{\mathrm{~B}} \mathrm{C} \overline{\mathrm{D}}+\mathrm{ABCD}+\mathrm{AB} \overline{\mathrm{C}} \overline{\mathrm{D}}+\mathrm{ABC} \overline{\mathrm{D}}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{C}} \mathrm{D}
$$

(C) (a) Explain working of 3×4 matrix keyboard encoder.
(b) What is race around condition? Which Flip-Flop exhibits this condition ? How can race around condition be eliminated ?

