Total No. of Questions: 8]

SEAT No.:		
[Total	No. of Pages	: 3

P714

[5117]-4 F.Y.B.Sc.

BIOTECHNOLOGY

Bb-104: Mathematics and Statistical Methods for Biologists

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of non-programmable scientific calculator is allowed.
- 4) Solve each section on separate answer paper.

SECTION - I

(Mathematics)

Q1) Attempt each of the following:

 $[5 \times 2 = 10]$

- a) Write modulus and principal argument of $\frac{(1+i)^2}{2i}$.
- b) If $z = \tan^{-1}xy$, then find $z_x + z_y$.
- c) Find adjoint of the matrix

$$A = \begin{bmatrix} 1 & 0 & 5 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{bmatrix}$$

- d) Show that the sequence $a_n = 1 + \frac{1}{1!} + \dots + \frac{1}{n!}$ is monotonically increasing.
- e) Examine the convergence of the series $\sum_{n=0}^{\infty} \left(\frac{3}{7}\right)^n$.

Q2) Attempt any four of the following:

$$[4 \times 2\frac{1}{2} = 10]$$

a) Find rank of the matrix

$$A = \begin{bmatrix} 1 & 3 & 5 & 4 \\ 4 & -7 & -3 & -1 \\ 3 & 2 & 7 & 8 \end{bmatrix}$$

- b) Examine convergence of the series $\sum_{n=0}^{\infty} \frac{5^n}{n!}$.
- c) Check whether the vectors (1, 2, 3), (0, -1, 2), (0, 3, 1) are linearly dependent.
- d) Check for exactness and hence solve the following differential equation $(3x + 2y^2)dx = 2xy dy$.
- e) Solve : $x^5 1 = 0$.
- f) If $u = x \log(xy)$, find $\frac{\partial^3 u}{\partial x^2 \partial y}$.
- Q3) Attempt any two of the following:

$$[2 \times 5 = 10]$$

a) Solve the following system of linear equations.

$$x + y + z = 1$$
$$x + y - 2z = 3$$
$$2x + y + z = 2$$

- b) Find the stationary points and determine the nature of the given function $f(x, y) = x^2 + 3y + y^2$.
- c) Discuss convergence of the sequence $\sqrt{3}$, $\sqrt{3\sqrt{3}}$, $\sqrt{3\sqrt{3\sqrt{3}}}$,......
- **Q4)** Attempt any one of the following:

$$[1 \times 10 = 10]$$

a) Find all eigenvalues and eigenvectors of A. Also find P (if it exists) that diagonalizes A.

$$\begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- b) i) State and prove De Moivre's theorem for positive integers.
 - ii) Solve $\frac{dy}{dx} = \frac{y-x}{y+x}$.

SECTION - II

Q5) Attempt each of the following:

 $[5 \times 2]$

- a) State the classical definition of probability.
- b) Define: median.
- c) Explain the term Type II error.
- d) State additive property of Poisson distribution.
- e) Define kurtosis.

Q6) Attempt any four of the following:

 $[4 \times 2.5]$

- a) Four cards are drawn at random from a well shuffled pack of 52 cards. Find probability that all cards are of same suit.
- b) What is multiple and partial correlation.
- c) Write a short note on discrete probability distribution.
- d) State merits of arithmetic mean.
- e) Explain hypothesis with illustration.
- f) Find range and median of the data given 55, 75, 80, 95, 120, 200, 250, 100, 67, 90.

Q7) Attempt any two:

 $[2 \times 5]$

- a) Define Gaussian distribution & state its additive property.
- b) Compute standard deviation of the following frequency data.

Marks	10-20	20-30	30-40	40-50	50-60	60-70
No.of Students	6	5	4	6	3	1

c) Write a short note on random sampling.

Q8) Attempt any one of the following:

 $[1 \times 10]$

- a) Describe the test procedure for testing equality of means and variances of two populations.
- b) What do you mean by analysis of variance (ANOVA) technique.

