Total No. of Questions : 4]

SEAT No.:		
[Total	No. of Pages :	3

P622

[5315] - 101 S.Y.B.Sc.

MATHEMATICS

MT-211: Multivariable Calculus - I (2013 Pattern) (Semester - I) (Paper - I)

Time: 2 Hours] [Max. Marks: 40

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- *Q1)* Attempt any <u>Five</u> of the following:

[10]

- a) State second derivative test for extream of a function of two variables.
- b) Find the tangent plane to the surface $f(x, y, z) = x^2 + y^2 + z 9$ at the point (1, 2, 4).
- c) Find the slope of the tangent to the parabola at (1, 2, 5) if the plane x = 1 intersects the paraboloid $z = x^2 + y^2$ in a parabola.
- d) Find an equation for the level curve of the function $f(x, y) = \sqrt{x^2 1}$ that passes through the point (1, 0).
- e) State Clairaut's theorem for function of two variables.
- f) Give an example of a continuous function f(x, y) which does not have partial derivatives of first order.
- g) Evaluate $\int_{0}^{1} \int_{0}^{\pi} y \sin z \, dx \, dy \, dz$

P.T.O.

Q2) Attempt any two of the following:

- [10]
- a) If f(x, y) is continuous at (x_0, y_0) then prove that the function $f(x, y_0)$ is continuous at $x = x_0$ and the function $f(x_0, y)$ is continuous at $y = y_0$, where $f(x, y_0)$ and $f(x_0, y)$ being function of one variable. Is the converse hold? Justify.
- b) State and prove Taylor's theorem for the function of two variables.
- Show that $f(x, y) = \sqrt{|xy|}$ is continuous at (0, 0) but not differentiable at (0, 0)

Q3) Attempt any two of the following:

- [10]
- a) If w = f(u,v) is a differentiable function of u, and v and $u = \phi(x,y) \& v = \psi(x,y)$ are differentiable function of x and y then prove that the composite function $w = f[\phi(x,y), \psi(x,y)] = F(x,y)$ is differentiable function of x & y.
- b) Find the directional derivative of $f(x, y) = \tan^{-1}\left(\frac{y}{x}\right) + \sqrt{3}\sin^{-1}\left(\frac{xy}{2}\right)$ at the point (1, 1) in the direction of $3\overline{i} 2\overline{j}$.
- c) Discuss the maxima and minima of the function

$$f(x,y) = x^3 + y^3 - 12x - 3y + 5.$$

Q4) Attempt any one of the following:

[10]

- a) i) Evaluate the integral $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of integration.
 - ii) Find the volume of the ellipsold $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = L$ by using the spherical polar co-ordinates.

[5315]-101

- b) i) Evaluate $\iint_{R} \sqrt{4x^2 y^2} dx dy$, where R is the triangle bounded by the lines y = 0, y = x and x = 1.
 - ii) Evaluate $\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} dx dy$ by applying the transformation $x = u + v, \ y = 2v.$

888