Total No. of Questions :6]

P120

SEAT No.:

[Total No. of Pages :2]

APR. -16/BE/Insem. - 17 B.E. (Mechanical)

MECHANICAL SYSTEM DESIGN

(2012 Pattern) (Semester - II) (402048)

Time: 1 Hour] [Max. Marks:30

Instructions to the candidates:

- 1) Answer Q 1 or Q2, Q3 or Q4, Q5 or Q6
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume Suitable data if necessary
- Q1) a) Explain the significance of geometric progression ratio. [4]
 - b) Compare different laws of regulation of speeds in multispeed gear box. [6]

OR

Q2) A six speed gear box is to be designed for a machine tool drive. The spindle speeds range between 200 rpm And 1200 rpm. If the gear box is driven by motor of 8 KW, 1200 rpm through belt drive. Draw the speed diagram and gearing diagram.

[10]

- Q3) a) Give the comparison between Normal distribution and Standard Normal distribution curves.[4]
 - b) The diameters of a bolt are normally distributed with a mean of 10.02 mm and a standard deviation of 0.01 mm. The design specifications for the diameter are 10 ± 0.025 mm. Calculate the percentage of bolts likely to be rejected. (The area below normal curve from Z=0 to Z=0.5 is 0.1915).

- Q4) A mechanical component is subjected to a mean stress of 207 Mpa with a standard deviation of 55.2 Mpa. The material has a mean strength of 276 MPa with a standard deviation of 41.4 MPa.[10]
 - a) Find the probability of failure.
 - b) If the material is changed such that its mean strength is 380 MPa find the probability of failure. Area from 0 to Z is as

Z	1.0	2.5	3.0	
Area	0.3413	0.4938	0.4987	

- Q5) a) Explain the guidelines involved for selection of material handling equipment.[4]
 - b) Explain the steps involved in belt conveyor analysis.

[6]

OR

- Q6) A triple ply belt conveyor is required to transport 4 tons of iron ore per hour at a conveyor speed of 3 m/sec. If the mass density of iron ore is 2.5 tons/m³.
 Suggest:
 - a) The maximum suitable inclination for the conveyor
 - b) The diameter of the drive pulley
 - c) The gear box reduction ratio, if motor speed is 1440 rpm. Use following data:

Belt inclination α	16 - 20°	21 - 25°	26 - 30°	31 - 35°
Flowability 'K' factor	2.2* 10-4	2.35* 10-4	2.20* 10-4	

68506850