Total No of Questions: [12]

SEAT NO. :

[Total No. of Pages : 6]

	<u> </u>		
		B.E. Mechanical (2008 Pattern)	
		Finite Element Method	
		(Elective - III) (Semester - II)	
		Time: 3 Hours Max. Marks : 100	
		es to the candidates:	
		wers to the two sections should be written in separate answer books.	l
		at diagrams must be drawn wherever necessary.	l
3) 4)		ures to the right side indicate full marks. of Calculator is allowed.	
		of Calculator is allowed. ume Suitable data if necessary.	
		litional data sheet is attached for the reference.	
U /	/100		
		SECTION I	
~ 1 \		Unit I	501
Q1)	a)	Explain how banded skyline solution method is used to solve simultaneous equations.	[8]
ļ	b)	List at least 6 advantages of Finite Element Method over analytical method. Also list	[8]
]		disadvantages or limitations of FEM.	L
$\overline{)}$		OR Explain the terms essential and natural boundary conditions. Give example of each	гот
Q2)	a) b)	Explain the terms essential and natural boundary conditions. Give example of each. Explain in detail the method of matrix partitioning and how it is used to impose boundary	[8]
ļ	0)	conditions in finite element method.	[8]
l	<u> </u>	Unit II	<u> </u>
Q3)	a)	For the plane truss shown in Figure 3a, determine the following. Each element has $E = 70$ GPa,	[10]
\mathbf{Q}^{j}	<i>a)</i>	and area $A = 200 \text{ mm}^2$.	[TA]
ļ		i. write down the elemental stiffness matrices (k) for each element,	1
ļ		ii. assemble k matrices to get global stiffness matrix (K),	1
ļ		iii. apply boundary conditions,	1
ļ		iv. find horizontal and vertical displacements of node 1,	1
ļ		v. determine reaction forces at node 2, 3 and 4.	1
ļ		12 kN	1
ļ		500 mm 400 mm	1
ļ			1
ļ			1
ļ			
ļ		300 mm	
ļ			1
ļ		3	1
ļ		El arran 2 a	
	L)	Figure 3a	гоj
ļ	b)	For the five spring assemblage shown in Figure 3b, determine the displacements at nodes 2 and 3 and the reactions at nodes 1 and 4. Assume the rigid vertical bars at nodes 2 and 3 connecting the	[8]
ļ		springs remain horizontal at all times but are free to slide or displace left or right. There is an	1
ļ		applied force at node 3 of 1000 N to the right. Consider $k1 = 500$ N/mm, $k2 = k3 = 300$ N/mm,	1
ļ		applied force at node 5 of 1000 N to the right. Consider $kT = 5000$ /min, $kZ = kS = 5000$ /min, and $k4 = k5 = 400$ /mm	1
ļ	1 1		1

	DATA SHEET						
Sh	Shape Functions:						
1	1 Bar Element:						
	$N_1=1-rac{x}{L}$ $N_2=rac{x}{L}$						
2	Beam Element:						
	$egin{aligned} N_1 &= rac{1}{L^3}ig(2x^3 - 3x^2L + L^3ig) \ N_2 &= rac{1}{L^3}ig(x^3L - 2x^2L^2 + xL^3ig) \end{aligned}$						
	$N_3 = rac{1}{L^3}ig(-2x^3+3x^2Lig)$						
	$N_4 = rac{1}{L^3} ig(x^3 L - x^2 L^2 ig)$						
Ele	emental Stiffness Matrices:						
1	Bar Element:						
	$k_{bar} = rac{AE}{L} \left[egin{array}{cc} 1 & -1 \ -1 & 1 \end{array} ight]$						
2	Beam Element:						
	$k_{beam} = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix}$						
3	Truss Element:						
	$C = \cos(\theta)$ and $S = \sin(\theta)$						
	θ is positive in anti clockwise direction.						
	$k_{truss} = rac{AE}{L} \left[egin{array}{ccccc} C^2 & CS & -C^2 & -CS \ CS & S^2 & -CS & -S^2 \ -C^2 & -CS & C^2 & CS \ -CS & -S^2 & CS & S^2 \end{array} ight]$						
Ele	emental Mass Matrices:						
1	Bar Element:						
(a)	Consistent mass matrix:						
	$m_{consistent} = rac{ ho AL}{6} \left[egin{array}{c} 2 & 1 \ 1 & 2 \end{array} ight]$						

(\mathbf{h})	Lumped mass matrix:		www.sppuoninie				
 (0)							
	$m_{lumped} = rac{ ho AL}{2} \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array} ight]$						
2	Beam Element:						
(a)	Consistent mass matrix:						
	$m_{consistent} = rac{ ho AL}{420}$	$egin{array}{cccccccc} 156 & 22L & 54\ 22L & 4L^2 & 13L\ 54 & 13L & 156\ -13L & -3L^2 & -22L\ \end{array}$	$egin{array}{ccc} 4 & -13L \ L & -3L^2 \ 6 & -22L \ L & 4L^2 \end{array} \end{bmatrix}$				
(b)	Lumped mass matrix:						
	$m_{lumped} = rac{ ho AL}{2} \left[egin{array}{c} 0 \ 0 \ 0 \ 0 \end{array} ight]$	$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$					
He	eat Transfer Matrices:						
	k matrix for Conduction + Convection for bar element:						
	$k = \frac{AK}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{hPL}{WWW.sppuonline.2m} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$						
	where, $A = cross$ sectional area, $K =$ Thermal Conductivity, $L =$ Length of an element, h = Convection Coefficient, and P = Perimeter.						
Ga	auss Quadrature:						
	Table for Gauss Points for integration from -1 to 1						
$\int_{-1}^{1} y(x) dx = \sum_{i=1}^{n} W_i y_i$							
	Number of Points	Locations, x_i	Associated Weights, W_i				
	1	$x_1=0.000$	2.000				
	2	$x_1, x_2 = \pm \ 0.57735$	1.000				
	3	$x_1, x_3 = \pm \ 0.77459$	5/9 = 0.55556				
		$x_2 = 0.000$	8/9 = 0.88889				
	4	$x_1, x_4 = \pm \ 0.86113$	0.34785				
		$x_2, x_3 = \pm \ 0.33998$	0.65214				