\square
[Total No. of Pages : 6]

B.E. Mechanical (2008 Pattern)
 Finite Element Method
 (Elective - III) (Semester - II)

Time: 3 Hours

Max. Marks : 100

Instructions to the candidates:

1) Answers to the two sections should be written in separate answer books.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of Calculator is allowed.
5) Assume Suitable data if necessary.
6) Additional data sheet is attached for the reference.

		Figure 3b	
OR			
Q4)	a)	Derive elemental stiffness matrix and force vector for two-nodded (linear) bar element using Principle of Minimum Potential Energy (PMPE) Method. The bar element is oriented in xdirection. Assume that only concentrated forces are acting on the nodes of bar element. Ignore surface tractions and the body forces.	[10]
	b)	For the beam shown in Figure 4b, determine the displacements and the slope at node 2. Also find the reaction forces and moments at nodes 1 and 3 . Consider $\mathrm{E}=210 \mathrm{GPa}$, and $\mathrm{I}=4 \times 10^{-4} \mathrm{~m}^{4}$ Figure 4b	[8]
Unit III			
Q5)		Evaluate the following integrals.	
	a)	use two-point Gaussian quadrature method $I=\int_{0}^{1} \frac{1}{1+x^{2}} d x$	[5]
	b)	use two-point Gaussian quadrature method $I=\int_{1}^{5}\left[3^{x}+1\right] d x$	[5]
	c)	use three-point Gaussian quadrature method $I=\int_{4}^{5} \frac{2 \sin (x)}{x^{2}} d x$	[6]
OR			
Q6)	a)	Explain with neat sketches the difference between p and h refinements in Finite Element Method.	[6]

	b)	For the three-nodded iso-parametric bar element shown in Figure 6b, show that the Jacobean determinate is $\|J\|=L / 2$. Also determine the shape functions $N 1-N 3$ and the strain-displacement matrix $[B]$. Assume the displacement field as $u=a 1+a 2 s+a 3 s^{2}$. Figure 6b	[10]
SECTION II			
Unit IV			
Q7)		Determine the temperature distribution along the length of the $\operatorname{rod}(a t \mathrm{~L} / 4, \mathrm{~L} / 2,3 \mathrm{~L} / 4$, and L) as shown in Figure 7. The rod with radius of 25 mm is insulated at the perimeter. The left end has a constant temperature of $40{ }^{\circ} \mathrm{C}$ and a free stream temperature T_{∞} is $-10^{\circ} \mathrm{C}$. Let $K x x=35 \mathrm{~W} /(\mathrm{m}$ $\left.{ }^{\circ} \mathrm{C}\right)$ and $h=55 \mathrm{~W} /\left(\mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)$. Figure 7	[16]
OR			
Q8)		A composite wall shown in Figure 8 is composed of two homogeneous slabs in contact. Let thermal conductivities be $K 1=1 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$ for firebrick slab 1 and $K 2=0.3 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$ for insulating slab 2. The left side is exposed to an ambient temperature of $T_{\infty L}=1000{ }^{\circ} \mathrm{C}$ inside the furnace with heat transfer coefficient of $h L=10 \mathrm{~W} /\left(\mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)$. The right side ambient temperature is $T_{\infty} R=25^{\circ} \mathrm{C}$ outside of the furnace with heat transfer coefficient of $h R=3 \mathrm{~W} /\left(\mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)$. The thicknesses of the slabs are $L 1=0.20 \mathrm{~m}$, and $L 2=0.10 \mathrm{~m}$. Determine the temperature at the left edge, point between the two slabs and right edge of the composite wall. Figure 8	[16]
Unit V			

DATA SHEET

Shape Functions:

1 Bar Element:

$$
N_{1}=1-\frac{x}{L} \quad N_{2}=\frac{x}{L}
$$

2 Beam Element:

$$
\begin{aligned}
& N_{1}=\frac{1}{L^{3}}\left(2 x^{3}-3 x^{2} L+L^{3}\right) \\
& N_{2}=\frac{1}{L^{3}}\left(x^{3} L-2 x^{2} L^{2}+x L^{3}\right) \\
& N_{3}=\frac{1}{L^{3}}\left(-2 x^{3}+3 x^{2} L\right) \\
& N_{4}=\frac{1}{L^{3}}\left(x^{3} L-x^{2} L^{2}\right)
\end{aligned}
$$

Elemental Stiffness Matrices:

1 Bar Element:

$$
k_{b a r}=\frac{A E}{L}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

2 Beam Element:

$$
k_{\text {beam }}=\frac{E I}{L^{3}}\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]
$$

3 Truss Element:
$C=\cos (\theta)$ and $S=\sin (\theta)$
θ is positive in anti clockwise direction.

$$
k_{\text {truss }}=\frac{A E}{L}\left[\begin{array}{rrrr}
C^{2} & C S & -C^{2} & -C S \\
C S & S^{2} & -C S & -S^{2} \\
-C^{2} & -C S & C^{2} & C S \\
-C S & -S^{2} & C S & S^{2}
\end{array}\right]
$$

Elemental Mass Matrices:

1 Bar Element:
(a) Consistent mass matrix:

$$
m_{\text {consistent }}=\frac{\rho A L}{6}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

(b) Lumped mass matrix:

$$
m_{\text {lumped }}=\frac{\rho A L}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

2 Beam Element:
(a) Consistent mass matrix:

$$
m_{\text {consistent }}=\frac{\rho A L}{420}\left[\begin{array}{rrrr}
156 & 22 L & 54 & -13 L \\
22 L & 4 L^{2} & 13 L & -3 L^{2} \\
54 & 13 L & 156 & -22 L \\
-13 L & -3 L^{2} & -22 L & 4 L^{2}
\end{array}\right]
$$

(b) Lumped mass matrix:

$$
m_{\text {lumped }}=\frac{\rho A L}{2}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Heat Transfer Matrices:

k matrix for Conduction + Convection for bar element:

$$
k=\frac{A K}{L}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]+\frac{h P L}{6}\left[\begin{array}{cc}
2 & 1 \\
11_{2} & 2
\end{array}\right]
$$

where, $\mathrm{A}=$ cross sectional area, $\mathrm{K}=$ Thermal Conductivity, $\mathrm{L}=$ Length of an element, $\mathrm{h}=$ Convection Coefficient, and $\mathrm{P}=$ Perimeter.

Gauss Quadrature:

Table for Gauss Points for integration from -1 to 1
$\int_{-1}^{1} y(x) d x=\sum_{i=1}^{n} W_{i} y_{i}$

Number of Points	Locations, x_{i}	Associated Weights, W_{i}
1	$x_{1}=0.000$	2.000
2	$x_{1}, x_{2}= \pm 0.57735$	1.000
3	$x_{1}, x_{3}= \pm 0.77459$	$5 / 9=0.55556$
	$x_{2}=0.000$	$8 / 9=0.88889$
4	$x_{1}, x_{4}= \pm 0.86113$	0.34785
	$x_{2}, x_{3}= \pm 0.33998$	0.65214

