Total	No.	of Questions : 12] SEAT No. :
P179	93	[Total No. of Pages : 5
		[5059]-43
		B.E. (Mech.)
		COMPUTATIONAL FLUID DYNAMICS
		(2008 Pattern) (Semester - II) (Elective - III)
		(2000 I attern) (Semester III)
Time	: 3 F	Hours] [Max. Marks : 100
		ons to the candidates:
	<i>1)</i>	Answer any 3 questions from each section.
	<i>2)</i>	Answers to the two sections should be written in separate books.
	3)	Neat diagrams must be drawn wherever necessary.
	<i>4)</i>	Figures to the right indicate full marks.
	5)	Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
	<i>6)</i>	Assume suitable data, if necessary.
		SECTION - I
Q1)	a)	Derive the continity equation in differential conservation form for a 3-D, unsteady, compressible flow. [12]
	b)	Develope 1D, steady state convective - diffusion equation from the generalised energy equation, in partial differential form. Give the justification for cancellation of different term from the energy equation. Also write Boundary conditions. [6]
		OR
Q2)	a)	Explain models of flow using control volume & state what are conservation & non-conservation form of equation. [8]
	b)	What is substantial derivative? How it is different than` derivative in differential calculus? [8]
	c)	In short explain meaning of 'Divergence of velocity'? [2]
<i>Q</i> 3)	a)	Using Taylor's series, derive the first order forward difference, backward

difference and central difference approximation for the term $\frac{\partial u}{\partial y}$. [6]

b) Flow between two plates can be expressed with relation $\mu \frac{\partial^2 u}{\partial y^2} = \frac{\partial P}{\partial x}$

Assuming constant, such that, $\frac{\partial^2 u}{\partial y^2} = 1$; find velocity distribution in a slit

having width of 10 units and upper plate moving at a velocity of 10 units with respect to stationery lower plate. Use 5 nodes for finite differencing. Use Gauss Siedel implicit method. [10]

OR

Q4) a) Consider steady state heat loss through circular cross-sectioned, tapered in length, fin with temperature of the fin base and the surrounding fluid as $T_b = 125$ °C and $T_f = 25$ °C respectively. (Ref.fig. 1) Assume the heat loss from the end face to be negligible. Obtail temperatures of nodes 2, 3, 4, 5.

Assume k = 1w/mk for fin material & h = 10w/m²k for the surrounding fluid. Derive the governing equation from the basic energy equation. Use numerical techniques. [12]

- b) What do you understand by the word 'Descritization' in reference to finite difference approach? [4]
- **Q5)** Two parallel plates extended to infinity are a distance of 40mm apart. The fluid within the plates has kinematic viscosity of 2.17×10^{-4} m²/s and density

of 800 kg/m³. The lower plate is stationary and the upper plate is suddenly set in motion in a constant velocity of 40m/s. Find the velocity distribution within fluid in y direction for one time step (Δt). Use 5 nodes for finite differencing and apply Crank-Nicolson's implicite method. Take $\Delta t = 0.55$. Recall that the governing equation is reduced from Navier - stokes equation and is given by

$$\rho \frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial y^2} \text{ with usual notations.}$$
 [16]

OR

- Q6) a) What are explicit and implicit approaches used in CFD analysis? State merits and demerits of these approaches.[8]
 - b) Explain Thomas Algorithm for solution of Tridiagonal matrix. Solve the following tridiagonal system with Thomas Algorithm to find T_1, T_2, T_3, T_4 .

$$\begin{bmatrix} 2.04 & -1 & 0 & 0 \\ -1 & 2.04 & -1 & 0 \\ 0 & -1 & 2.04 & -1 \\ 0 & 0 & -1 & 2.04 \end{bmatrix} \times \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix} = \begin{bmatrix} 40.8 \\ 0.8 \\ 0.8 \\ 200.8 \end{bmatrix}$$

SECTION - II

Q7) Following 2D equation is valid over the interval

$$0 \le x \le 1, 0 \le y \le 1, t \ge 0, \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}$$
 Initial distribution of T at $t = 0$ is given by,

$$T(x, y, 0) = \sin(2\pi y) * \sin(2\pi x)$$

The value of T over the boundary remains at T = 0, for t > 0. Find temperature variation using $h = \frac{1}{3}$ along x and y and choosing $\Delta t = \left(\frac{1}{20}\right) S$. Explain use of 'Alternate Direction Implicit Method' (ADI) for such problem. Find values at intermediate step i.e. $t = \left(\frac{1}{40}\right) S$. At fixed value in y direction (i.e.j), "sweep"

in x direction to calculate T at
$$t = \frac{\Delta t}{2}$$
. [16]

Q8) Compute the solution of the equation $\frac{\partial u}{\partial t} = -C \frac{\partial u}{\partial x}$, C = constant > 0, for the

first two - steps, using

- Lax Wendroff scheme
- Mac Cormack scheme

With initial condition

$$u(x,0) = \begin{cases} x - x^2, & 0 \le x \le 1, \\ 0, & x > 1, \end{cases}$$

and boundary condition u(0,t) = 0 for all t, taking $\Delta x = \frac{1}{4}$ and $r = \frac{C\Delta t}{\Delta x} = \frac{1}{2}$.

[16]

- Develop the solution methodology for 2D, unsteady Convection-**Q9**) a) Diffusion equation giving practicle example. Explain about the possible boundary conditions. [12]
 - What is the necessity of using upwind scheme over central difference b) scheme, in the solution of 1D, steady, Convection-Diffusion equation. [6]
- Consider a thin rod moving with a velocity 10⁻⁵ m/s as shown in fig2. *Q10* a) The periphery of the rod is perfectly insulated,

The rod is subjected to a specified temperature $T_0 = 25$ °C for $x \le 0$ and $T_1 = 300$ °C for $x \ge L$.

Model the domain into 4 elements and find the temperature of rod at the node points. You may assume the governing equation as 1D, steady state, Convection-Diffusion equation. Solve using upwind difference approach. Derive the formulaes used for finding the solution. Assume

$$\alpha = 10^{-5} \, m^2 / s$$
 for rod. [12]

- b) Give advantages and disadvantages of finite volume method. [6]
- **Q11)**a) Why is staggered grid adopted for incompressible flows? [2]
 - b) Show how the staggered grid is implemented for the pressure equation (SIMPLE). Draw the grid. [4]
 - c) Present the SIMPLE algorithm and show how the pressure and velocity field is determined. [10]

www.sppuonline.com

OR

- Q12)a) What is difference between boundary conditions and initial conditions used in CFD. Explain about Dirichlet, Neumann and mixed boundary conditions.[8]
 - b) What are the main elements involved in a complete CFD analysis? Explain these steps in detail. [8]

