Total No. of Questions: 12]

[Total No. of Pages: 4

P553

[4064] - 417

B.E. (Mechanical)

INDUSTRIAL FLUID POWER

(2008 Course) (402043) (Sem. - I)

What is a function of a pressure relief valve? Draw simple sketch and **Q5**) a) symbol and explain its working. State its applications. [8] Explain in detail with neat sketch how a pressure compensated flow b) control valve works. Name one application of this valve. [8] What is 'open centre' and 'closed centre' valve position of directional Q6) a) control valve (DCV). Explain with sketch the importance and applications [8] of these center positions of DCV. [8] by Write short note on: Meter in and Meter out circuits. **SECTION - II** Explain the need for speed control of Hydraulic motor. Explain in brief Q7) a) any two methods of it. [6] Explain the applications of Tandem & Telescopic cylinders. [4] **b**) Explain the various efficiencies related to Hydraulic motors. [6] OR A Hydraulic system consists of two cylinders. The cylinders required to **Q8**) a) be operated as per the following sequence:cylinder 'A' extends. **i**) cylinder 'B' extends. ii) iii) cylinder 'A' retracts. cylinder 'B' retracts. iv) Develop a hydraulic circuit for above requirements. [8] What do you mean by cushioning of cylinders? How it is done? [4] [4] Identify the following components: ii) i) iv)

Q9)	a)	Draw the pneumatic circuits consisting of following components: i) Quick Exhaust valve.		
		Draw the separate circuits & explain their working. [8]		
	b)	Can we use atmospheric air directly in pneumatic systems? If no, why?		
	-,	What should be done to make use of it? [4]		
• • • •	c)	Write a short note on vaccum pump. [4]		
		\mathbf{OR}		
Q10,)a)	Write any two applications in industry requiring vaccum for their operation. [6]		
	b)	Differentiate clearly between Hydraulic & pneumatic motor. [4]		
	c) A pneumatic system is required to paste the stickers on a part. The operation is need to be repeated after every 10 seconds. Draw a suitable pneumatic circuit satisfying above requirement. [6]			
Q11)		nachine Tool slide is to be moved by means of Hydraulic cylinder as		
	follo			
	a)	Initially it moves through a distance of 250 mm against a load of 10 kN in 5 seconds.		
	b)	It then follows a working stroke of 120 mm against an effective load of 40 kN. The feed rate required is between 0.5 to 1m/min.		
	c)	The return stroke is as fast as possible.		
		A meter out circuit is used for speed control.		
		Draw the circuit & select different components used in circuit. [18]		
•		\mathbf{OR}		
Q12,	cyli whi retra	o similar cylinders A & B are to be operated simultaneously. The load For nder A is 20 kN & for B is 25 kN. Cylinders A & B has a stroke of 1M ch need to be completed in 25 seconds. The cylinder B should starts acting when cylinder A has completed its retraction. Returning of cylinders as quickly as possible.		
		w a circuit as per above requirements. Select all the components used in uit from standard data tables. [18]		

DATA

1. Suction Strainer:

Model	Flow Capacity (/pm)
S ₁	38
S ₂	76
S ₃	152

3. Vane Pump

Medel	Delivery in / pm		
	at 0 bar	at 35 bar	at 70 bar
P ₁	8.5	7.1	5.3
P,	12.9	11.4	9.5
P ₃	17.6	16.1	14.3
P_4	25.1	23.8	22.4
P ₅	39.0	37.5	35.6

5. Flow control Valve

2. L10.A	control Valve:	
Model	Working Pressure (bar)	Flow Range (/pm)
F ₁	70	0-4.1
F ₂	105	9 4 9 0-4.9
F ₃	105	0-16.3
F ₄	70	0-24.6

7. Check Valve:

Model	Max working Pressure (bar)	Flow Capacity (/pm)
C ₁	210	15.2
C ₂	210	30.4
C ₃	210	76

9. Cylinder-(Max Working Pressure-210 bar

Model	Bore dia. (mm.)	Rod dia (mm)	
A ₁	25	12.5	
A ₂	40	16.	
A ₃	50	35	
A ₄	75	45	
A _s	100	, 50	

2. Pressure Gauge:

Model	Range (bar)
PG,	0 - 25
PG_2	0 - 40
PG_3	0 -100
PG ₄	0 - 160

4. Relief Valve:

Model	Flow capacity // pm)	Max Working Pressure & bar	
R	11.4	70 .	
R ₂	19	210	
R_3	30.4	70	
R_4	57	105	

6. Directional Control Valve:

Model	Max working Pressure (bar)	Flow Capacity (/pm)	
$\overline{\overline{\mathbf{p}_{1}}}$	350	19	
$\mathbf{D_2}$	210	38	
D. line.cor	210 1	76	

8. Pilot Operated Check Valve :

Model	Max working Pressure (bar)	Flow Capacity (/pm)
PO ₁	210	19
PO ₂	210	38
PO ₃	210	76

10. Oil Reservoirs:

Model	Capacity (litres)	
$T_{\mathbf{i}}$	40	
T ₂	100	
T_3	250	
T_4	400	
${ m T_5}$	600	