			ww	w.sppuc
Total No	o. of Questions : 12]	20	SEAT No.:	
P2390) 15	153]-13	[Total No. of	Pages: 5
	-	Alech./Auto)		
	•	FMACHINES	S_II	
	9			
	(2008 Cour	se) (Semester	- 1)	
Time: 3	Hours]		[Max. Ma	arks : 100
Instructi	ons to the candidates:			
1)	Answer 3 questions from Section	I and 3 questions	from Section II.	
2)	Neat diagrams must be drawn wh	herever necessary.		
3)	Figures to the right indicate full	marks.		
4)	Use of logarithmic tables, electro	nic pocket calcula	tor and steam tables is	allowed.
5)	Assume suitable data, if necessar	ry.	2	
	9.		æ	
	SEC	CTION - I	9	
	N		•	
Q1) a)	Derive an expression for the	friction torque in	n a multi collar pivot	bearing
	with uniform pressure cond	itions.		[4]
1.			21 W 1000 T	vi • 1
b)			•	
	pressure is limited to 70 kN		1	
	the radial width of friction			olate are
	effective and coefficient of	friction is 0.25, 1	find the	[12]
		× C.1 1 .	1.1 1.	
	i) Inner and outer diamet	ter of the plate at	nd the mean radius.	
	ii) Width of the friction lin	ning.		

Obtain the expression for the torque transmitted by a centrifugal clutch.[6] **Q2)** a)

- Define friction circle and friction axes. Explain the importance of friction b) circle and friction axis in case of slider crank mechanism. [6]
- Derive an expression for the effort required to overcome thread friction c) while the load is being lifted. **[4]**

<i>Q3)</i>	a)	Design a cam profile to operate an inline roller follower using following				
		data [16]				
	Base circle of the cam : 30 mm					
		• Radius of the roller: 10mm				
		Maximum lift of the follower: 40 mm				
		• Angle of ascent: 120°				
		• Angle of dwell: 30°				
		• Angle of descent : 80°				
	 Motion of follower during Ascent: Uniform velocity The follower immediately falls by 10 mm at the end of dwell in highest position and further descents with SHM motion by 30 mm 					
	The cam rotaes at uniform speed in clockwise direction. Determine maixmum velocity and acceleration during outstroke and return strol					
	b)	Explain what is Undercutting of cams? [2]				
		OR 2				
Q4)	a)	Explain the following advanced cam curves. Mention the application of each: [6]				
		Simple polynomial cam				
		• 3-4-5 polynomial cam				
	b)	Derive and expression for the cam jump of an eccentric cam operating flat faced follower.				
	c)	Explain the effect on the cam profile by varying [6]				
		i) Base Circle Diameter and				
		ii) Pressure angle				
		2				

- **Q5)** a) What is gyroscopic effect? Explain with example of aeroplane. [4]
 - b) Each arm of a porter governor is 200mm long and is hinged at a distance of 40 mm from the axis of the rotation. The mass of each ball is 1.5 kg and the sleeve is 25 kg. When the links are at 30° to the vertical, the sleeve begins to rise at 260 rpm. Assuming that the friction force is constant, find the maximum and minimum speeds of rotation when the inclination of arms to the vertical is 45°. [12]

OR

- **Q6)** a) The turbine rotor of a ship has a mass of 1000 kg and rotates at 2200 rpm clockwise when viewed from the aft. The radius of gyration of the rotor is 220 mm. Determine the gyroscopic couple and its effect when the
 - i) Ship turns right at a radius 250 m with a speed of 25 km/hour.
 - ii) Ship pitches with bow rising at an angular velocity 0.8 rad/s
 - iii) Ship rolls at an angular velocity of 0.1 rad/s.
 - b) Explain what is controlling force in centrifugal governors? [4]

SECTION - II

- Q7) a) The addendum on each wheel of two mating gears is to be such that the line of contact on each side of the pitch point is half the maximum possible length. The number of teeth on the two gears is 24 and 48. The teeth are of 20° pressure angle involute with a module of 12 mm. Determine: [12]
 - The addendum for the pinion and gear.
 - Angle of contact on gear and pinion.
 - The contact ratio.
 - b) What is interference? Explain the methods to avoid interference. [6]

OR

Q8)	a)	Describe significance of the following terms for a spur gear. [6]			
		i) Pressure angle			
		ii) Contact ratio			
		iii)	Path of contact		
	b)	20°.	Contact ratio Angle of action of pinion and wheel Ratio of sliding to rolling velocity at start of engagement, pit	nda [2]	
		point and at end of engagement			
Q9)	a) \	What is the significance of helix angle in the worm gears? Derive expression for efficiency of worm gears.			
	b)	Exp	lain the force analysis of bevel gears.	[4]	
	c)	Obta	ain an expression for formative number of teeth. OR	[4]	
Q10) a)		of n	rive is made up of two spiral gears of same hand, same diameter a normal pitch 14 mm. The centre distance between the axes of the standard standard spiral provided in the spiral	the gle	
		i)	Spiral angle of each wheel		
		ii)	Number of teeth on each wheel		
		iii)	Efficiency of the drive		
		iv)	Maximum efficiency		
	b)	Dete	ermine the condition for maximum efficiency of spiral gears.	[4]	

*Q11)*a) Figure 1 shows a gear train in which gears D-E and F-G are compound gears. D gears with A and B; E gears with F; G gears with C. The numbers of teeth on each gear are A = 60, B = 120, C = 135, D = 30, E = 75, F = 30, G = 60. If the wheel A is fixed and arm makes 20 revolutions clockwise, find the revolutions of B and C. If arm is applied a turning moment of 1 kN-m, determine the turning moment on the shaft supporting the wheel C. [12]

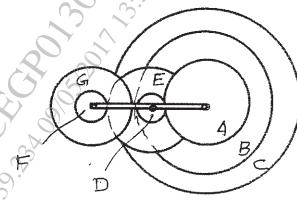


Figure 1: Q. 11

Compare simple and epicyclic gear train. Give examples of each. [4]

- An epicyclic gear train consists of two gears A and B having 30 and 40 *Q12*)a) teeth respectively. The arm rotates about the centre of the gear A at a speed of 80 rpm counterclockwise. Determine the speed of the gear B if
 - The gear A is fixed i)
 - Gear A rotates at 240 rpm clockwise instead of being fixed ii)
 - [4] What is the equivalent moment of inertia of a geared system? b) THE POST OF THE PO