\square
[Total No. of Pages :2

Oct./ TE/ Insem. - 159

T.E. (Mechanical)

TURBOMACHINES
(2015 Patterii) (Semester - I) (302044)

Time : 1 Hour]
[Max. Marks :30

Instructions to the candidates:

1) Answer Q 1 or Q.2, Q. 3 or Q. 4 and Q. 5 or Q.6.
2) Figures to the right indicate full marks.
3) Use of scientific calculator is allowed.
4) Assume data wherever necessary and mention it.
5) Draw neat and suitable figures wherever necessary.

Q1) a) Define Turbo Machines. Give classification of Turbo Machines.
b) A jet of water 5 cm diameter moving wittra velocity of $25 \mathrm{~m} / \mathrm{sec}$. Strikes horizontally a single moving vane, məving in the direction of jet with velocity of $16 \mathrm{~m} / \mathrm{sec}$. The vane deflects the jet through 130°. Find the axial force exerted by the set onthe vane. Also find the velocity and direction of water at outlet Negfect friction.

Q2) a) Prove that the work done per second on a series of moving curved vanes by a jet of water striking at one of the tips of the vane tangentiafiy is given by, Work done/sec $=\rho \mathrm{aV}_{1}\left[\mathrm{~V}_{\mathrm{w} 1} \pm \mathrm{V}_{\mathrm{w} 2}\right] \times \mathrm{u}$.
b) A jet of water of diameter 70 mm moving with velocity $20 \mathrm{~m} / \mathrm{s}$ strikes a fixed plate in such a way that the angle between jet and the plate is 60 degree. Find the force exerted by jet on plate in following cases:
i) In the direction normal to the plate
ii) In the direction of jet.

Q3) a) Explain the constructional details of Pelton Wheel curbine).
b) A Pelton turbine is required to work under a head of 250 m to develop 20 MW at 375 rpm. Considering speed rationf 0.46 , jet ratio of 10 , mechanical efficiency of 94%, angle of deflection 165 degree and nozzle coefficient as 0.97 determine the number of jets, diameter of runner and number of buckets. Assume bucket friction factor of 0.88 .

Q4) a) Derive expression for Unit speed andUnit Discharge.
b) Double Jet Pelton Wheel has a specific speed of 14 and is required to deliver 1000 kW . The turbine is sipplied through pipeline from a reservoir whose level is 400 m above thén nozzles. Allowing 5\% for frictional loss in the pipe, calculate:
i) Speed in RPM
ii) Diameterafjets.
iii) Mean Diameter of Bucket circle

Take $C \sqrt{ }=0.98$, speed ratio $=0.46$ and overall efficiency $=85 \%$, the specifíc speedis based on power output per jet.

Q5) a) Define Jet Ratio and Degree of reaction.
b) For thefrancis turbine following data is availablest power $=130 \mathrm{~kW}$ Net Head $=9 \mathrm{~m}$, Speed $=120$ RPM, Overall effíiency $=75 \%$, Hydraulic efficiency $=90 \%$, Velocity of flowat inlet $=1.15 \sqrt{ } \mathrm{H}$,
\times Maximum absolute velocity at inle $-3.45 / \mathrm{VH}$ assume radial discharge at exit, find
i) Guide blade angle and moving vane angle at inlet
ii) Diameter of runner at inlet.

Q6) a) A Kaplan turbine operates ara discharge of $77 \mathrm{~m}^{3} / \mathrm{s}$. The runner diameter and hub diameter are 4.2 m and 1.5 m respectively. Taking the speed ratio of 2.1. Determine
i) The net head,
ii) The power developed and
iii) The specific speed.

Assume the mechanical and hydraulic efficiency of 88% and 9% respectively and no whirl at outlet.
b) Draw construction and details of Kaplan Tûbine.

