Total No	. of Questions :6] SEAT No. :
P45	[Total No. of Pages :2
	Oct./ TE/ Insem 159
	T.E. (Mechanical)
TURBOMACHINES	
(2015 Pattern) (Semester - I) (302044)	
	(2012) (Semester 1) (802011)
Time: 1	Hour] [Max. Marks :30
Instructi	ons to the candidates:
1)	Answer Q 1 or Q.2, Q.3 or Q.4 and Q.5 or Q.6.
2)	Figures to the right indicate full marks.
<i>3</i>)	Use of scientific calculator is allowed.
<i>4</i>)	Figures to the right indicate full marks. Use of scientific calculator is allowed. Assume data wherever necessary and mention it. Draw neat and suitable figures wherever necessary.
5)	Draw neat and suitable figures wherever necessary.
Q1) a)	Define Turbo Machines. Give classification of Turbo Machines. [4]
b)	A jet of water 5 cm diameter moving with a velocity of 25 m/sec. Strikes
	horizontally a single moving vane, moving in the direction of jet with
	velocity of 16 m/sec. The vane deflects the jet through 130°. Find the
	axial force exerted by the jet on the vane. Also find the velocity and direction of water at outlet Neglect friction. [6]
	OR
Q2) a)	Prove that the work done per second on a series of moving curved
2 / 11/	vanes by a jet of water striking at one of the tips of the vane tangentially
	is given by, Work done/sec = $\rho a V_1 [V_{w1} \pm V_{w2}] \times u$. [4]
b)	A jet of water of diameter 70 mm moving with velocity 20 m/s strikes a
	fixed plate in such a way that the angle between jet and the plate is 60
	degree. Find the force exerted by jet on plate in following cases: [6]
	i) In the direction normal to the plate
	ii) In the direction of jet.
Q3) a)	Explain the constructional details of Pelton Wheel (turbine). [4]

A Pelton turbine is required to work under a head of 250 m to develop b) 20 MW at 375 rpm. Considering speed ratio of 0.46, jet ratio of 10, mechanical efficiency of 94%, angle of deflection 165 degree and nozzle coefficient as 0.97 determine the number of jets, diameter of runner and number of buckets. Assume bucket friction factor of 0.88. **[6]**

P.T.O.

Derive expression for Unit speed and Unit Discharge. [4] **Q4**) a) Double Jet Pelton Wheel has a specific speed of 14 and is required to b) deliver 1000 kW. The turbine is supplied through pipeline from a reservoir whose level is 400 m above the nozzles. Allowing 5% for frictional loss in the pipe, calculate: **[6]** i) Speed in RPM ii) Diameter of jets. Mean Diameter of Bucket circle iii) Take $C_{V} = 0.98$, speed ratio = 0.46 and overall efficiency = 85%, the specific speed is based on power output per jet. Define Jet Ratio and Degree of reaction. **Q5**) a) [4] For the Francis turbine following data is available shaft power = 130 kW b) Net Head = 9m, Speed = 120 RPM, Overall efficiency = 75%, Hydraulic efficiency = 90%, Velocity of flow at inlet = 1.15 \sqrt{H} , [6] Maximum absolute velocity at inlet $= 3.45 \, \text{VH}$ assume radial discharge at exit, find Guide blade angle and moving vane angle at inlet i) ii) Diameter of runner at inlet A Kaplan turbine operates at a discharge of 77 m³/s. The runner diameter *06*) a) and hub diameter are 4.2 m and 1.5 m respectively. Taking the speed ratio of 2.1. Determine i) The net head, ii) The power developed and The specific speed. Assume the mechanical and hydraulic efficiency of 88% and 92% respectively and no whirl at outlet. [6] Draw construction and details of Kaplan Turbine. b) [4] **TE/ Insem. - 159**