# 5. E. - Meth, sem- II NOV-Dec-2012, 2008 pathern

Total No. of Questions—12]

[Total No. of Printed Pages—4+2

| Seat |  |
|------|--|
| No.  |  |

[4262]-117

## S.E. (Mech.) (Second Semester) EXAMINATION, 2012

## I. C. ENGINES

#### (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B.:— (i) Answer three questions from Section I and three questions from Section II.
  - (ii) Answers to the two Sections should be written in separate answer-books.
  - (iii) Neat diagrams must be drawn wherever necessary.
  - (iv) Figures to the right indicate full marks.
  - (v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
  - (vi) Assume suitable data, if necessary.

### SECTION I

- 1. (a) Compare Otto and Diesel cycles for:
  - (i) Constant maximum pressure and same heat input.
  - (ii) Same compression ratio and same heat input.
  - (iii) Same maximum pressure and temperature. [9]

P.T.O.

LIBRARY

(b) An air standard diesel cycle has a compression ratio of 14. The pressure at the beginning of the compression stroke is 1 bar and temperature is 27°C. The maximum temperature is 2500°C. Determine thermal efficiency, stroke volume and mean effective pressure. [9]

Or

- 2. (a) What is exhaust blowdown loss? Discuss the optimum opening position of exhaust valve to reduce this loss. [4]
  - (b) Explain with P-V diagram the loss due to variation of specific heat in Otto cycle. [6]
  - (c) Derive an expression for the mean effective pressure of the Otto cycle. [6]
  - (d) List the important reciprocating engine parts and their materials. [2]
- 3. (a) Describe the stages of combustion in S.I. engines with the help of P-Q diagram. [8]
  - (b) The throat diameter of a carburettor is 9 cm and nozzle diam is 5.5 mm. Air and fuel discharge coefficients are 0.85 and 0.7 respectively. Nozzle lip is 6 mm. Pressure difference causing flow is 0.1 bar. Find:
    - (i) A/F ratio
    - (ii) Mean velocity of air required to start the fuel injection through nozzle.

Take density of air as  $1.2 \text{ kg/m}^3$  and density of fuel as  $750 \text{ kg/m}^3$ . [8]

- 4. (a) Discuss the effect of the following engine variables on flame propagation:
  - (i) Fuel-Air ratio
  - (ii) Compression ratio
  - (iii) Engine load
  - (iv) Turbulence.

[8]

LIBRARY

- (b) What is abnormal combustion knock? How can we differentiate between normal combustion knock and abnormal combustion knock.

  [8]
- 5. (a) Explain the phenomenon of diesel knock. Compare it with the detonation in S.I. engines. [8]
  - (b) How are C.I. engine combustion chambers classified? Discuss with a neat sketch 'M' combustion chamber. [8]

Or

- 6. (a) Explain the stages of combustion in C.I. engines with the help of P.Q. diagram. [8]
  - (b) Explain how induction swirl is created. Compare induction swirl with compression swirl. [8]

[4262]-117

3

P.T.O.

## SECTION II

| 7. | ( <i>a</i> ) | List various electronic ignition systems in use. Describe any     |
|----|--------------|-------------------------------------------------------------------|
|    |              | one of them. State its advantages over conventional ignition      |
|    |              | system. [10]                                                      |
|    | ( <b>b</b> ) | Define and differentiate between:                                 |
|    |              | (i) Boundary lubrication                                          |
|    |              | (ii) Hydrodynamic lubrication                                     |
|    |              | (iii) Elastohydrodynamic lubrication. [8]                         |
|    |              | Or                                                                |
| 8. | (a)          | What is the advantage of pressurised cooling? How is pressurizing |
|    |              | accomplished ? [6]                                                |
|    | ( <i>b</i> ) | Explain the working of spring loaded mechanical governor with     |
|    |              | the help of neat sketch used for diesel engines. [8]              |
|    | (c)          | Write a note on starting system. Explain any one system with      |
|    |              | a neat sketch. [4]                                                |
|    |              |                                                                   |
| 9. | (a)          | What are the different methods used to measure brake power.       |
|    |              | Explain any one method with a neat sketch. [6]                    |
|    |              |                                                                   |

- (b) An eight cylinder, four stroke engine of 9 cm bore and 8 cm stroke with a compression ratio of 7 is tested at 4500 rpm on a dynamometer which has 54 cm arm. During a 10 minutes test the dynamometer scale beam reading was 42 kg and the engine consumed 4.4 kg of gasoline having a calorific value of 44000 kJ/kg. Air at 27°C and 1 bar was supplied to the carburettor at the rate of 6 kg/min. Find:
  - (i) The brake power delivered
  - (ii) BMEP
  - (iii) BSFC
  - (iv) Brake thermal efficiency
  - (v) Volumetric efficiency
  - (vi) Air-fuel ratio.

[10]

Or

- 10. (a) Describe the Morse Test. What is the assumption made in this test? What is the accuracy of this test? [6]
  - (b) Explain the methods used for the measurement of fuel consumption with neat sketch. [6]
  - (c) What are the methods used for improving engine performance?

    Explain. [4]

[4262]-117

5

P.T.O.



[8]

- 11. (a) What is air pollution? Explain the contributors to air pollution and their harmful effects on human beings. [8]
  - (b) What are the alternative fuels used for diesel engine? Discuss the advantages of any one fuel over diesel. [8]

Or

- 12. (a) What are Euronorms? Are they different from Bharat norms?

  Enlist emission norms for trucks and buses. [8]
  - (b) Write short notes on:
    - (i) Catalytic converter





[4262]-117