Total No. of Questions—12] [Total No. of Printed Pages—4+2]

Seat	
No.	

[4757]-115

S.E. (Mechanical, Mech. Sand., Automobile, Production, Prod. Sand.) (Second Semester) EXAMINATION, 2015 ELECTRICAL TECHNOLOGY (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. := (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 from Section I and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12 from Section II.
 - Answers to the two Sections should be written in separate (ii)answer-book.
 - (iii) Figures to the right indicate full marks.
 - (iv)Neat diagrams must be drawn wherever necessary.
 - Use of non-programmable scientific calculator is allowed. (v)
 - (vi)Assume suitable data wherever necessary and state the same clearly.

SECTION I

1. (a) Discuss one wattmeter method for measurement of reactive power in a three-phase balanced load with the help of connection [6] diagram and phasor diagram.

P.T.O.

[6]

[8]

[8]

(<i>b</i>)	State advantages of good power factor in electrical systems.
	Hence mention methods of improving power factor. [6]
(c)	A 3-phase motor load has a power factor of 0.397 lagging.
	Two wattmeters connected to measure power provide the total
	input as 30 kW. Find the reading on each wattmeter. [6]
	Or
(a)	Explain single-phase energy measurement using CT and PT with
	the help of connection diagram. [6]
(<i>b</i>)	Explain in brief the requirements of good lighting scheme. State
	any two examples of special purpose lighting. [6]

Two wattmeters are used to measure power in a 3-phase balanced

load. The wattmeter readings are 8.2 kW and 7.5 kW respectively.

Discuss the typical layout of distribution transformer substation

Derive an expression for torque developed in a three-phase

induction motor under running conditions. Hence obtain the

2

2.

3.

(c)

(a)

(b)

[4757]-115

Calculate:

(i)

(ii)

(iii)

Total power

Power factor

Total reactive power.

condition for maximum torque.

with the help of single line diagram.

- 4. (a) Discuss three-phase transformer connections with the help of suitable diagrams. State possible applications of transformers based on these connections.
 [8]
 - (b) The power input to a 500 V, 50 Hz, 6-pole, 3-phase induction motor running at 975 rpm is 40 kW. The stator losses are 1 kW and the friction and windage losses are 2 kW. Calculate:
 - (i) Slip
 - (ii) Rotor copper loss
 - (iii) Shaft power
 - (iv) Efficiency of motor. [8]
- 5. (a) Distinguish between salient pole and non-salient pole type of synchronous generators. Write specifications of these generators. [8]
 - (b) Why is a single-phase induction motor not self-starting? Explain the working principle and construction of a split phase induction motor.

- 6. (a) Explain the construction and working of a shaded pole induction motor with the help of neat diagrams. Mention its typical specifications.
 - (b) Find the synchronous impedance and reactance of a single-phase alternator in which a given field current produces an armature current of 200 A on short circuit and a generated e.m.f. of 50 V on open circuit. The armature resistance is 0.1 ohm. To what induced voltage must the alternator be excited if it is to deliver a load of 100 A at a power factor of 0.8 lagging with a terminal voltage of 200 V. [8]

SECTION II

- 7. (a) What is a servomotor? Explain construction and working of D.C. servomotor. Write its any *four* applications. [8]
 - (b) State and explain any two methods for controlling the speed of a D.C. shunt motor. Also mention merits and demerits of these methods.

- 8. (a) Explain construction and working of universal motor. State its any two applications. [8]
 - (b) A D.C. series motor runs at 800 rpm with a line current of 100 A from 230 V mains. Its armature circuit resistance is 0.15 Ω and field resistance is 0.1 Ω . Find the speed at which the motor runs at a line current of 25 A, assuming the flux at this current is 45% of flux at 100 A. [8]
- 9. (a) State methods to turn ON SCR. Draw and explain V-I characteristics of SCR. [8]
 - (b) Explain construction and working of enhancement type

 MOSFET with the help of suitable diagrams. Draw its output
 characteristics. [8]

Or

- 10. (a) Draw and explain V-I characteristics of DIAC and TRIAC. [8]
 - (b) Explain construction and working of GTO. Draw its characteristic curve and hence state its any *two* applications. [8]

- 11. (a) Describe the various types of chopper configurations in brief with the help of appropriate diagrams. [8]
 - (b) State and explain factors for selection of electrical motors based on various load characteristics in industrial applications. Quote any *five* applications and state the suitable type of motor selected for these.

Or

- **12.** (a) Explain V/f control of three-phase induction motors. State two applications employing this method of control. [8]
 - (b) What is a drive ? Discussificatures of individual and group drives. Elaborate advantages of electrical drives. [10]