Total No. of Questions—12]

[Total No. of Printed Pages—7

Seat	
No.	

[4457]-18

S.E. (Mechanical/Automobile) (Second Semester)

EXAMINATION, 2013

ELECTRICAL TECHNOLOGY

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answer any three questions from each Section.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of electronic pocket calculator is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

1. (a) Derive the relation between power factor angle and the two wattmeter readings W_1 and W_2 for a balanced three-phase inductive load. [6]

	(<i>b</i>)	What is tariff? Discuss HT and LT tariff. [6]			
	(c)	Explain the construction and working of single-phase energy			
		meter with the help of neat diagram. [6]			
		Or			
2.	(a)	Explain one wattmeter method for measurement of reactive			
	power in a three-phase balanced load with the help of conne				
		diagram and phasors. [6]			
	(<i>b</i>)	What are demerits of low power factor? State power factor			
		improvement methods and explain any one of them. [6]			
	(c)	Two wattmeters connected to measure the input to a balanced			
		three-phase circuit indicate 2500 W and 500 W respectively.			
		Find the power factor of the circuit, when:			
		(i) Both readings are positive			
		(ii) The later reading is obtained after reversing the connec			
		of current coil. [6]			
3.	(a)	Discuss the typical layout of distribution transformer substation			
		with the help of single line diagram. Mention specifications			
		of transformer therein. [8]			

2

[4457]-18

[8]

- (b) A 6-pole, 50 Hz, 3-phase induction motor runs at 960 rpm when the torque on the shaft is 200 N-m. If the stator losses are 1500 W and friction and windage losses are 500 W, find:
 - (i) Rotor copper loss and
 - (ii) Efficiency of the motor.

Or

- 4. (a) Discuss three-phase transformer connections with the help of suitable diagrams. Mention possible applications of these connections.
 - (b) State the expression for torque developed in a three-phase induction motor. Discuss the relationship between torque and slip with the help of characteristic curve. [8]
- (a) Why is a single-phase induction motor not self-starting?How is it made self-started? State its types and applications.
 - (b) Derive equation of induced E.M.F. in an alternator. Mention typical specifications of an alternator of your choice. [8]

- 6. (a) Explain the construction and working of a shaded pole induction motor with the help of neat sketches. Mention its applications. [8]
 - (b) A 1200 kVA, 3300 V, 50 Hz three-phase star connected alternator has armature resistance of 0.25 ohm per phase.
 A field current of 40 A produces a short circuit current of 200 A and an open circuit voltage of 1100 V line to line. Find the voltage regulation on : [8]
 - (i) Full load 0.8 power factor lagging and
 - (ii) Full load 0.8 power factor leading.

SECTION II

7. (a) Draw and explain electrical characteristics (T Vs I_a and N Vs I_a) of the following d.c. motors : [3×3=9]

4

- (i) D.C. shunt motor
- (ii) D.C. series motor
- (iii) D.C. cumulative compound motor.

(b) A d.c. motor runs at 1200 rpm by taking 100 A current from 230 V d.c. supply. If armature and series field winding resistances are 0.12 Ω and 0.03 Ω respectively, calculate the speed of motor if motor current has fallen to 50 A.

(*Note* : Assume flux is directly proportional to the field current).

Or

- 8. (a) State and explain with neat construction diagram construction, working, characteristic features and industrial applications of Universal Motor. [9]
 - (b) A 230 V d.c. shunt motor runs at 2000 rpm and takes 5 A current from the d.c. supply. If armsture and field winding resistances are 0.25 Ω and 230 Ω respectively, determine the drop in the speed if motor is loaded in such a way that it takes current from the supply 41A.

(Note: Neglect armature reaction) [9]

9. (a) Explain with neat diagram constructional details and V-I characteristics of SCR. [8]

		MOSFET:	[3+3+2=8]			
		(i) Output V-I characteristics				
		(ii) Transfer characteristics				
		(iii) Features (any four).				
		Or				
10.	(a)	For TRIAC (Bidirectional Triode SCR):	[3+3+2=8]			
		(i) Draw structure and symbol				
		(ii) Draw only static V-I characteristic				
		(iii) State only two applications.				
	(<i>b</i>)	For DIAC:	[3+3+2=8]			
		(i) Draw only structure and symbol				
		(ii) Draw only V-I characteristic				
		(iii) State any two applications.				
11.	(a)	State and explain various advantages of electrical d	rives over			
		other conventional drive system, also state factors to be considered				
		while selecting a motor for a drive.	[8]			
[4457	']- 1 8	6				

Explain the following for n-channel enhancement mode

(*b*)

(b) What is chopper? With the help of diagram explain two quadrant chopper circuit (Class C Chopper). [8]

Or

- 12. (a) State and explain advantages and disadvantages of group drive, also state any two field of applications of group drive.
 - (b) Explain V/F control of three-phase induction motor. [8]

www.sppuonline.com