Total No. of Questions—12]

[Total No. of Printed Pages—7

Seat	
No.	

[4657]-13

S.E. (Mechanical & Mechanical (S/W)) (First Semester)

EXAMINATION, 2014

(METALLURGY-I)

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

N.B. :— (i) Figures to the right indicate full marks.

(ii) Assume suitable data, if necessary.

SECTION I

- 1. (A) Show the following planes and directions in a cubic cell: [4]
 - (a) (1 0 1)
 - (b) $(1 \ \overline{1} \ 0)$
 - (c) [1 1 2]
 - (d) [1 2 1].
 - (B) Derive an expression for critical resolved shear stress in single crystal. How is plastic deformation in a polycrystalline material different from deformation in a single crystal? [6]

P.T.O.

	(C)	Give the reasons for the following:	[6]
		(a) Copper is more ductile than iron. Do you agree? Just your choice.	ify
		(b) Substitutional and interstitial crystal defects improve to strength and hardness. Comment.	the
		Or	
2.	(A)	What are dislocations? What are the types of dislocation Explain Screw and Edge dislocation. Define Burger vector.	ns ? [6]
	(B)	Calculate resolved shear stress of a single crystal if apple	
		tensile stress is 30 kg/mm ² and slip plane is oriented at 45° to tensile axis?	the [4]
	(C)	Why is annealing done after cold working? Explain the change	${ m ges}$
		in mechanical properties that take place during annealing w	ith
		proper graphs.	[6]
3.	(A)	What is creep ? How is creep test conducted ?	[6]
	(B)	Why are impact test specimens notched? What is the effect	of
		temperature on impact strength ?	[6]
	(C)	Explain the principle of ultrasonic flow inspection. State	its
		advantages, limitations and applications.	[4]

4. (A) The steel specimen tested in standard tension test to evaluate mechanical properties. The data is given below: [8]

Diameter of the specimen = 12.5 mm

Original gauge length = 50 mm

Load at lower yield point = 45 kN

Load at upper yield point = 46 kN

Maximum load = 75 kN

Gauge length after fracture = 62.5 mm

Diameter at fracture = 80 mm

Stain at 20 kN = 7×10^{-4}

Calculate the following:

- (a) UTS
- (b) % Elongation and Modulus of Elasticity
- (c) Modulus of resilience
- (d) Modulus of toughness.
- (B) Compare Brinel and Vickers Hardness Test. [4]
- (C) Explain the principle of radiography with neat sketch. State its applications. [4]

- 5. (A) Draw the microstructures of AISI 1080 steel which is cooled to room temperature under equilibrium cooling condition. Find amounts of phases in it.
 - (B) Explain the reasons for Widmanstatten structure. Is it desirable?Justify your answer. [6]
 - (C) Compare and contrast between Ferritic, Austenitic and Martensitic stainless steels. [6]

Or

- 6. (A) Draw neat, labeled Fe-Fe3C equilibrium diagram. Explain slow cooling 0.4% C steel with neat sketches. [6]
 - (B) A slowly cooled steel contains 60% Ferrite and 40% Pearlite at room temperature. Determine the amount of total Ferrite and Cementite present in the alloy. [6]
 - (C) White cast iron finds limitations in engineering industry. True or False? Justify your choice. State typical composition of white cast iron.

[4657]-13

SECTION II

7.	(A)	Draw T.T.T. curve for eutectoid steel. Explain the procedure fo	r
		plotting T.T.T. curve for 0.8% C steel.	;]
	(B)	Distinguish between annealing and normalizing. [6	;]
	(C)	Explain the mechanism of austenite to martensite transformation	n
		and state characteristics of this transformation. What is retained	d
		austenite? Is it desirable? Justify.	5]
		Or	
8.	(A)	What is tempering? Is it mandatory? With a suitable graph	ı,
		explain the variations in properties with temperin	g
		temperatures. [6	;]
	(B)	State True/False and justify (any three): [6	;]
		(a) Heat treatment is not required after carburizing.	
		(b) Plain carbon steels cannot be successfully Nitrided.	
		(c) Lathe beds are flame hardened.	
		(d) 0.1% carbon steel can be induction hardened.	
	(C)	Distinguish between the following:	;]
		(i) Cyaniding and liquid carburizing;	
		(ii) Flame and induction hardening.	
[4657]]-13	5	

9.	(A)	Enlist the powder production processes. Explain any one technique					
		in brief.	[6]				
	(B)	Explain step-by-step manufacturing process for cemented carbid					
		tools.					
	(C)	In sintering mandatory in P/M technique? Justify in brief.	[4]				
	Or						
10.	(A)	Distinguish between Brass and Bronzes.	[4]				
	(B)	Enlist the properties required for the material to be bearing					
		material. Write a brief note on Babbitts. [6]					
	(C)	uggest suitable non-ferrous material for the following applications,					
		also mention compositions (any three):					
		(a) Cylinder head of diesel engine					
		(b) Bearings to be used in sea water					
		(c) Thermocouple wire					
		(d) Non-sparkling tools					
		(e) Aircraft components					
		(f) Measuring tape.					

- 11. (A) Explain the characteristics of the following fibers used in composites

 (any three):

 (a) Boron

 (b) Gillian Lill
 - (b) Silicon carbide
 - (c) Glass
 - (d) Aramid.
 - (B) Explain the property requirement for Biomedical materials. Justify Alumina and Zirconia as biomedical material. [6]
 - (C) Distinguish between Particle Reinforced and Fiber Reinforced composites. [4]

www.sppuonline.com

- **12.** Write short notes on (any four): [16]
 - (i) Self-lubricated bearings
 - (ii) Powder conditioning;
 - (iii) Carbon-nanotubes;
 - (iv) General properties of ceramics;
 - (v) Powder Rolling;
 - (vi) Isostatic Pressing.