SE MECHANICAL (2008 Course) 202043 Fluid Mechanics

Max. Marks: 100			Time: 03 Hrs.
 Solve three questions from each section Answers to two sections should be written in separate answer books Figures to the right indicate maximum marks Assume suitable data if required Non-Programmable scientific calculator is allowed 			
		Section –I	
Q.1. a)	Define	the following terms:	08
	i) ii) iii) iv)	Specific Weight and Mass Density Adhesion and Cohesion Surface tension and Capillarity Dynamic Viscosity and Kinematic	
b)	cm din	neter cylinder. The oil filling the a	ong slides vertically down in a 10.05 nnular space has a viscosity of 0.80 n slides down if load on the piston is
		OR	
Q. 1. a)) Explain	in brief the following terms:	08
	i) ii) iii) iv)	Steady and Unsteady flow Uniform and non-uniform flow Laminar and turbulent flow Rotational and Irrotational flow	
b			he velocity components: $u = 5x^3$ and , velocity and acceleration at point 10

Q.2 a) Explain the concept of absolute, gauge and vacuum pressures. What is a pressure head? How pressure can be expressed in terms of height of liquid column? 06

	A circular opening, 3 m in diameter in the vertical side of a water tank is oby a circular disc of same dimeter, which can rorate about a horizontal diameter.	
	If the head of water above the horizontal diameter is 4 m,	
	Calculate –	10
i)	Force on the disc and	
ii	Torque required to maintain the disc in vertical position.	
	OR	
Q. 2 a) I	Explain the following terms:	06
i)	Pressure at a point	
ii	Total Pressure	
ii	i) Centre of Pressure	
iv	y) Pressure on a surface	
	wooden block of specific gravity 0.75, width 15 cm, Depth 30 cm, and 10 cm floats horizontally on the surface of sea water with specific weight 1	_
	lculate the volume of water displaced, depth of immersion and cent	
	by ancy. Also find the metacentric height of the wooden block.	10
	· y · · · · · y · · · · · · · · · · · ·	
Q.3 a) S	tate and explain the Navier - Stoke's Equation and Euler equation of motio	n
	long a stream line.	08
b) E	Explain the working of Orifice meter	08
	OR	
Q. 3 a) S	tate and explain Bernaulli's equation.	08
b) E	Explain the working of Venturirmter	08
	Section –II	
Q.4 a) St	tate and explain Hagen Poiseuille equation for laminar flow in cicular pipes	06
b) A	container full of oil has a horizontal parallel crack in its end wall which it	is 300
n	nm wide and 50 mm thick in the direction of flow. The pressure difference two faces of the crack is 10kPa and the crack forms a gap of 0.	erence
	etween the parallel surfaces. If specific gravity and viscosity of oil is 0.8	
	.7 poise respectively, Calculate –	12
1	., poiso respectively, curculate	14

i) Volume of oil leakage per hour through the crack ii) Maximum leakage velocity iii)shear stress and velocity gradient at the boundary OR Q 4 a) State and explain Buckingham pi theorem 08 b) What are dimensionless numbers? What is their significance? Briefly explain - Reynold number and Mach number 10 08 Q.5 a) State and explain Darcy- Weisbach equation. b) Two sharp ended pipes of diameters 50 mm and 100 mm respectively, each of length 100 m are connected in parallel between two reservoirs which have a difference of level of 10 m. If coefficient of fiction for each pipe is 4f = 0.3, calculate the rate of flow for each pipe and also the diameter of a single pipe 100 m long which would have same discharge if it were substituted for the original two www.sppuonline.com pipes. 10 OR Q 5 a) Explain the concept of Hydraulic Gadient and total energy lines. 04 06 b) What are major and minor losses in pipes? Explain c) Explain in brief 'Moody diagram'. 06 Q 6 a) Explain Prandtl mixing length concept in turbulent flow 10 b) What is CFD Methodology? Explain. 06

OR

Q.6 a) Explain the Seperation of Boundary Layer and methods of its controlling.08b) Briefly explain the development of lift on Aerofoil.08