Total No. of Questions—8]

[Total No. of Printed Pages—8

Seat	
No.	

[5057]-211

S.E. (Mech./Prod./Automob./S/w) (First Semester) EXAMINATION, 2016

ENGINEERING MATHEMATICS—III

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, non-programable electronic pocket calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Attempt any two of the following: [8]
 - (i) $(D^2 4D + 4) y = e^{2x}.\sin x$
 - (ii) $(D^2 6D + 9) y = \frac{e^{3x}}{x^2}$ (By variation of parameters)
 - (iii) $[x^2D^2 + xD + 1] y = \sin \log (x^2)$.
 - (b) Solve the integral equation: [4]

$$\int_{0}^{\infty} f(x) \cos \lambda x \ dx = \begin{cases} 1 - \lambda, \ 0 \le \lambda \le 1 \\ 0, \lambda > 1 \end{cases}.$$

- 2. (a) A weight of '1 N' stretches a spring '5 cm'. A weight of '3 N' is attached to the string and weight W is pulled '10 cm' below the equilibrium position and then released. Determine the position and velocity as a function of time. [4]
 - (b) Solve any one of the following: [4]
 - (i) Find Laplace transform of:

$$f(t) = e^{-3t} \cdot \int_{0}^{t} t \cdot \sin 2t \ dt$$

(ii) Find the inverse Laplace transform of:

$$F(s) = \tan^{-1}\left(\frac{1}{s}\right).$$

(c) Solve the following differential equation, using Laplace transform method:

$$(D^2 + 2D + 1) y = t \cdot e^{-t},$$

given that $y(0) = 1, y'(0) = 2.$ [4]

3. (a) If:

$$\overline{F} = (y+z)\overline{i} + (z+x)\overline{j} + (x+y)\overline{k}$$

then show that curl curl curl $\overline{F} = \nabla^4 \overline{F}$. [4]

(b) Find the directional derivative of

$$\phi = xy^2 + yz^3$$

at (2, -1, 1) along the line

$$2(x - 2) = y + 1 = z - 1.$$
 [4]

(c) Find the coefficient of correlation for the following data: [4]

x	y
23	25
28	22
42	38
17	21
26	27
35	39

Or

4. (a) Prove any one of the following: [4]

$$(i) \qquad \nabla^2 \left(\frac{\overline{a} \cdot \overline{b}}{r} \right) = 0$$

$$(ii) \quad \nabla \cdot \left[r \nabla \left(\frac{1}{r^n} \right) \right] = \frac{n(n-2)}{r^{n+1}}$$

(b) A hospital switchboard receives an average of 4 emergency calls in a 10 minute interval. What is the probability that there are at most 3 calls in a 10 minute interval? [4]

(c) Calculate the first four moments about the mean of the following distribution. Find the coefficient of skewness and kurtosis.

5. (a) If

$$\overline{F} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20xz^2\hat{k},$$

then find the work done in moving a particle from (0, 0, 0) to (1, 1, 1) along the curve

$$x = t, y = t^2, z = t^3.$$
 [4]

(b) Verify Stokes' theorem for

$$\overline{F} = y^2 \hat{i} + x^2 \hat{j} - (x+z) \hat{k}$$

over the area of the triangle with vertices

$$(0, 0, 0), (1, 0, 0), (1, 1, 0).$$
 [5]

(c) Show that:
$$[4]$$

$$\iint\limits_{\mathbf{S}} \left(\phi \nabla \psi - \psi \nabla \phi \right) \cdot d\overline{\mathbf{S}} = \iiint\limits_{\mathbf{V}} \left(\phi \nabla^2 \psi - \psi \nabla^2 \phi \right) d\mathbf{V} \ .$$

Or

6. (a) Evaluate:

$$\int_{C} \overline{F} \cdot d\overline{r}$$

where

$$\overline{F} = \sin y \hat{i} + x (1 + \cos y) \hat{j}$$

and C is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ z = 0.$$
 [4]

(b) Use divergence theorem to evaluate

$$\iint\limits_{\mathbf{S}} \overline{\mathbf{F}} \cdot d\overline{\mathbf{S}}$$

where

$$\overline{F} = xz^2\hat{i} + (x^2y - z^2)\hat{j} + (2xy + y^2z)\hat{k}$$

and S is the surface enclosing region bounded by hemisphere

$$x^2 + y^2 + z^2 = 1$$

above XoY plane. [5]

(c) Evaluate:

$$\int_{C} \left(4y\hat{i} + 2z\hat{j} + 6y\hat{k} \right) \cdot d\overline{r}$$

where C is the curve of intersection of

$$x^2 + y^2 + z^2 = 2z$$
, and $x = z - 1$. [4]

- 7. Solve any two:
 - (a) A string is stretched and fastened to two points L apart. Motion is started by displacing the string in the form

$$u = a \sin \left(\frac{\pi x}{L}\right)$$

from which is released at time t = 0. Find the displacement u(x, t) from one end. [7]

(b) Solve

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2},$$

where u(x, t) satisfies the following conditions:

- $(i) \qquad u(0, \ t) \ = \ 0; \ \forall t$
- $(ii) \quad u(\mathbf{L},\ t) \ = \ 0; \ \forall t$
- (iii) u(x, 0) = x; for 0 < x < L

(iv)
$$u(x, \infty)$$
 is finite, $\forall x$. [6]

(c) A thin sheet of metal, bounded by x-axis and the lines x = 0; x = 1 and stretching to infinite in the Y-direction has its upper end lower faces perfectly insulated and its vertical edges and the edge at infinity are mentained at constant temperature 0° C, while over the base temperature of 100° C is maintained. Find steady state temperature u(x, y). [6]

Or

- 8. Solve any two:
 - (a) A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by

$$y(x, 0) = y_0 \sin^3\left(\frac{\pi x}{L}\right).$$

If it is released from rest from these position. Find the displacement y at any distance x from one end, at any time t. [7]

(b) An infinitely long uniform metal plate is enclosed between lines y = 0 and y = L for x > 0. The temperature is zero along the edges y = 0, y = L and at infinity. If the edge x = 0 is kept at a constant temperature u_0 , find the temperature distribution u(x, y).

(c) The temperature at any point of a insulated metal rod of one meter length is governed by the differential equation :

$$\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}.$$

Find u(x, t), subject to the following conditions:

- (*i*) $u(0, t) = 0^{\circ}C$
- $(ii) \quad u(1, t) = 0^{\circ}C$
- $(iii) \quad u(x, 0) = 50^{\circ}\text{C}.$

Hence find the temperature in the middle of the rod at any subsequent time. [6]

www.sppuonline.com