UNIVERSITY OF PUNE
 [4362]-223
 S.E. (Information Technology) Examination-2013 (Computer Graphics) (2008 Course)

[Time: 3 Hours]
[Max. Marks: 100]

Instructions:

1 Answer three questions from Section I and III questions from section II.
2 Answers to the two sections should be written in separate answer-books.

3 Neat diagrams must be drawn wherever necessary.
4 Black figures to the right indicate full marks.
5 Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
6 Assume suitable data, if necessary.

SECTION I

Q. $1 \quad$ a. Consider the line from $(5,5)$ to $(13,9)$. Use the Bresenham's algorithm to rasterize the line.
b. Explain filtering technique for anti-aliasing
c. Explain raster scan display

OR

Q. 2 a. Explain the term display file and display file interpreter. Explain two data structures for implementing display file.
b. Explain DDA line drawing algorithm along with its advantages and disadvantages.
$\left.\begin{array}{llll}\text { Q.3 } & \text { a. } & \begin{array}{l}\text { Give 2D transformation matrices for translation and } \\ \text { scaling. Prove that two successive 2D-rotations about } \\ \text { the origin commute. }\end{array} & {[8]} \\ \text { b. } & \begin{array}{l}\text { Explain flood fill algorithm for filling polygons } \\ \text { c. }\end{array} & \begin{array}{l}\text { Give the homogeneous coordinate transformation } \\ \text { matrix for counter clockwise rotation about the origin }\end{array} & {[8]}\end{array}\right]$

OR

\(\left.$$
\begin{array}{ll}\text { Q. } 4 & \text { a. } \quad \begin{array}{l}\text { Find the reflection of a point } \mathrm{A}[5,9] \text { about the line } \\
\mathrm{y}=\mathrm{x}+5\end{array}
$$

Find the transformation matrix that transforms the

given square \mathrm{ABCD} to half its size with centre still

remaining at the same position. The coordinates of

square are: \mathrm{A}(1,1), \mathrm{B}(3,1), \mathrm{C}(3,3), \mathrm{D}(1,3) . Also find

resultant coordinates of square.\end{array}\right\}\)| Explain parallel projections and perspective projection |
| :--- |
| Q. $5 \quad$ a. detail. |

i) Never a vanishing point,
ii) at most one vanishing point,
iii) at most two vanishing point,
iv) at most three vanishing points.

OR

Q. $6 \quad$ a. Explain general parallel projection onto a given plane. The view plane passes through a point $\mathrm{V}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ and normal to the view plane is given by $\mathrm{N}=\mathrm{n}_{1} \mathrm{i}+\mathrm{n}_{2} \mathrm{j}+\mathrm{n}_{3} \mathrm{k}$. The direction of projection is given by vector $\mathrm{V}=\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}}+\mathrm{c}_{\mathrm{k}}$. Give your answer stepwise along with transformation matrix at each step.
b. Write short note on (any two)
i> Polygon inside Test
ii> Joystick
iii> Polygon meshes

SECTION II

Q. $7 \quad$ a> Explain HSV and YIQ colour models
b> Explain in detail the steps for designing animation sequences

OR

Q. $8 \quad$ a> Explain different methods of controlling animation
b> Write short notes on
i> Colour mixing
ii> RGB colour model
Q. $9 \quad$ a> What is Jittering? State the advantages of distributed ray tracing.
b> Explain diffuse reflection
c> What is the basic purpose of ray tracing algorithm?
Explain ray tracing to find shadows

OR

Q. 10	a>	Compare Gaurand and Phong's method of shading	[8]
	b>	Explain Specular reflection with figure in detail	[8]
Q. 11	a>	Explain cubic spline interpolation methods	[8]
	b>	Explain in brief Monte-Carlo method for rendering OR	[8]
Q. 12	a>	How fractals are used to generate fractal surfaces?	[8]
		Give two examples of fractal surfaces.	
	b>	Write a short note on (any two)	[8]
		i> GPU	
		ii> Quadratic Surfaces	
		iii> Texture Mapping	

