Total No. of Questions—12]

[Total No. of Printed Pages—4+1

Seat	
No.	

[4657]-86

S.E. (I.T.) (Second Semester) EXAMINATION, 2014

COMPUTER GRAPHICS

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answer three questions from Section I and three questions from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) Give Bresenham's circle drawing algorithm and derive necessary mathematical expressions used in algorithm. [8]
 - (b) Explain different character generation methods. [6]
 - (c) Define Aliasing and Anti-aliasing. [2]

P.T.O.

- 2. (a) Explain the term display file. Give two ways to implement display file along with data structure. [6]
 - (b) Explain Bresenham's line drawing algorithm. Rasterize a line segment from A(5, 8) to B(9, 5) using Bresenham's algorithm.
- 3. (a) Explain homogeneous coordinate system. What is the need of homogeneous coordinates? Give the homogeneous coordinates matrices for 2D transformations: translation, rotation and scaling.
 [8]
 - (b) Explain scanline method for polygon filling with suitable example. [8]
 - (c) Translate the polygon whose vertices are A(0, 0), B(0, 4), C(4, 4), D(4, 0) by 2 units in X direction and 3 units in Y direction.

Or

4. (a) A polygon coordinates are A(7, 3), B(9, 3), C(9, 5) and D(7, 5) after doing scaling Sx = Sy = 2 and reflection through origin followed by translation by 1 unit in both X and Y direction. Find the original figure. [8]

[4657]-86

	(<i>b</i>)	Explain different methods for testing a pixel inside or outside
		a polygon. [8]
	(c)	Define Concave and Convex polygon. [2]
5.	(<i>a</i>)	Which are the different types of projections? Explain any
		one in detail with mathematical treatment. [8]
	(<i>b</i>)	What is meant by quadric surfaces ? Explain any two
		quadric surfaces with diagram and equations in both implicit
		and parametric form. [8]
		Or
6.	(a)	Explain various steps to perform rotation about an arbitrary
0.	(<i>u</i>)	axis in 3D. [10]
	(b)	
	(<i>b</i>)	Write short notes on (any two): [6]
		(i) B-Spline
		(ii) Polygon Tables
		(iii) Polygon Mesh.
		SECTION II
7.	(a)	What do you mean by morphing? Explain with example how
		it is used in animation along with necessary mathematical
		treatment. [8]
	(<i>b</i>)	What are the different ways in which motions of the objects
		can be specified? Explain each in brief. [8]
[4657	7]-86	3 P.T.O.

6.

8.	(a)	Explain CIE chromaticity diagram. Also explain HSV to RGB
		conversion. [8]
	(<i>b</i>)	Write short notes on: [8]
		(i) Key frame systems
		(ii) Color mixing.
9.	(a)	Explain with diagram: [9]
		(i) Ray Tracing to find shadows
		(ii) Ray Tracing to find reflections
		(iii) Ray tracing to solve hidden surface problem for every
		pixel.
	(<i>b</i>)	Compare Gauraud and Phong's method of shading. [8]
		Or
10.	(a)	Explain Lambert's cosine law. Also describe point source
		illumination. [9]
	(<i>b</i>)	What is Jittering ? State the advantages of distributed ray
		tracing. [4]
	(c)	Describe diffuse illumination. [4]
[4657]-86		4

- 11. (a) How are fractals used to generate fractal surfaces? Give two examples of fractal surfaces. [9]
 - (b) Write short notes on (any two): [8]
 - (i) Hilbert's curve
 - (ii) Anti-aliasing
 - (iii) Texture Mapping.

Or

- 12. (a) Explain Bezier curve generation using Mid-point subdivision.Also mention properties of Bezier curve. [9]
 - (b) Explain in brief Monte-Carlo method for rendering. [8] www.sppuonline.com