

Seat No.

S.E. (information Technology) (Semester - I) Examination, 2014 **FUNDAMENTALS OF DATA STRUCTURES** (2012 Course)

Time : 2 Hours

Instructions : 1) Answer four questions.

- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of calculator is allowed.
- 5) Assume suitable data if necessary.

1.	,	Explain entry controlled loop structures in C.	4
	b)	Write pseudo C/C++ algorithm to concatenate two strings using pointers without using library functions.	4
	c)	Explain any four bitwise operators in C with example.	4
		OR	
2.	a)	Explain use of pointer to array of structure with suitable example.	4
	b)	Explain different storage classes in C.	6
	c)	Write use of void data type.	2
3.	a)	Explain Big-oh, omega and theta notation with example.	6
	b)	Sort the following list in ascending order using bubble sort. Show all passes. Analyze time complexity.	6
		9, 7, -2, 4, 5, 3, -6, 2, 1, 8	
		OR	
4.	a)	Write different types of data structures. Give one example of each type.	6
	b)	Sort the following list using merge sort	4
		38, 27, 43, 3, 9, 82, 11, 10	
	c)	Compare linear and binary search.	2
5.	a)	What is recursion ? Explain role of stack in recursion. Write recursive function to add digits of a given positive integer.	6

b) Write a C/C++ function to add two sparse matrices. Analyse its time complexity. 6 2

c) Write address calculation for elements of one dimensional array.

214444

Max. Marks : 50

6.	a)	Write pseudo C/C++ algorithm to find transpose of sparse matrix using fast transpose algorithm.	6
	b)	Explain row and column major storage representation of two dimensional array.	6
	c)	Write a non-recursive algorithm to find factorial of a positive number.	2
7.	a)	Write a C/C++ program to create singly inked list of integers and display it forward.	6
	b)	Write node structure and represent following list using generalized linked list. (A, B, (C, D, E), F, (G, H, (I, J), K), L)	4
	c)	Write advantages of linked memory organization.	2
		OR	
8.	,	Write pseudo C/C++ algorithm to add two sorted polynomials represented by SLL.	6
	b)	What is generalized list ? Give node structure to represent multivariable polynomial using GLL.	4
	c)	Write advantages of circular singly linked list over a linear linked list.	2

www.sppuonline.com

B/I/14/

214444