Total No. of Questions—12]

[Total No. of Printed Pages-4

[3762]-231

S.E. (Information Technology) (I Semester) EXAMINATION, 2010 COMPUTER ORGANIZATION

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B.:— (i) Answer question No. 1 or 2, 3 or 4, and 5 or 6 from Section-I and question No. 7 or 8, 9 or 10, and 11 or 12 from Section-II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data if necessary.

SECTION I

1. (a) Compare restoring and non-restoring division algorithm. Perform the division using restoring division Algorithm.

Dividend = 1000, Divisor = 11

[12]

(b) Draw IEEE standard single precision and double precision floating point formats and state various fields in it with their size and significance. [6]

P.T.O.

4.	2. (a) Draw howchart of boom's algorithm for signed multiple			
		and multiply the following signed 2's complement numbers. Justify		
		your answer. [12]		
		Multiplicand = 11011 Multiplier = 00111		
	(<i>b</i>)	Explain IAS (Von Neumann) architecture with the help of a		
		neat diagram. [6]		
3.	(a)	Explain with examples the following addressing modes of		
		8086:		
		(i) Index addressing		
		(ii) Register Indirect		
		(iii) Base index with displacement addressing		
		(iv) Auto Increment.		
	(b)	Draw and explain programmer's model of 8086. [8]		
		Or		
4.	(a)	Draw timing diagram for momory write cycle of 8086 and list		
		operations in each T state. [8]		
٠.	(b)	Write a note on MAX/MIN mode of 8086. [8]		
5.	(a)	Write a control sequence for execution of the instruction:		
		Add (R ₃), R1. [8]		
[3762	2]-231	2		

. (0	Draw and explain single bus organization of the Or O, showing		
	all the registers and data paths. [8]		
	Or		
6. (a	Compare horizontal and vertical microinstruction repres-		
	entation. [8]		
(<i>b</i>	Explain the design of multiplier control unit using Delay Element		
	Method. [8]		
	SECTION II		
7. (a	Explain direct mapping technique with example. [10]		
(<i>b</i>	A direct mapped cache has the following parameters:		
	Cache size = 1K words, Block size = 128 words and main		
	memory size is 64K words. Specify the number of bits in TAG,		
	BLOCK and WORD in main memory address. [8]		
	Or		
$\vec{\beta}$. (a	What is cache coherence and MESI protocol? [10]		
(b	Write short notes on (any two): [8]		
	(i) EEPROM		
	(ii) RAID		
	(iii) SDRAM		
	(iv) DVD		
[2769] 9	ያ ያ		

9.	(a) Write	[8]	
	(<i>i</i>) K	Keyboard	
	(ii) S	Scanner.	
	(b) Expla	ain techniques for performing I/O.	[8]
		Or	
10.	(a) Explai	in DMA with neat diagram.	[8]
	(b) Explai	in functions and features of 8255 and 8251.	[8]
11.	(a) Compa	pare closely coupled and loosely coupled mult	iprocessor
	config	gurations. Explain loosely coupled multip	processor
	configu	guration.	[10]
	(b) Explai	in function level pipelining with diagram.	[6]
		Or	
12.	Write short	[16]	
·	(i) NUMA	$oldsymbol{A}$	·
	(ii) UMA		· · · · · · · · · · · · · · · · · · ·
	(iii) RISC		•
	(iv) CISC		
	(v) Cluster	$oldsymbol{x}^{oldsymbol{r}}$. The second constant $oldsymbol{x}^{oldsymbol{r}}$	
	(vi) Super	Scalar Architecture	