Total No. of Questions—12] [Total No. of Printed Pages—4+1]

Seat	
No.	

[4657]-81

S.E. (Information Technology) (First Semester) EXAMINATION, 2014

COMPUTER ORGANIZATION

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. := (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 Q. No. 4, Q. No. 5 or Q. No. 6 from Section I and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12 from Section II.
 - Answers to the two Sections should be written in separate (ii)answer-books.
 - (iii)Neat diagrams must be drawn wherever necessary.
 - Figures to the right indicate full marks. (iv)
 - (v)Assume suitable data, if necessary.

SECTION I

Compare Restoring and Non-Restoring division algorithm. 1. (a)Divide the following numbers using restoring division algorithm and justify your answer:

Dividend =
$$(21)_{10}$$
; Divisor = $(03)_{10}$. [10]

P.T.O.

(<i>b</i>)	Draw	IEEE	standards	for	single	precision	and dou	ıble
	precisi	on floa	iting poin	nun	nbers.	Represent	(-84.25) ₁₀	in
	single	precisio	on and do	uble	precisio	n format.		[8]

Or

2. (a) Explain Booth's algorithm to multiply the following pair of numbers: [10]

Multiplicand = $(15)_{10}$ multiplier = $(-6)_{10}$.

- (b) Draw IAS (Von Neumann) Architecture and explain function of registers in it. [8]
- 3. (a) State design factors in design of instruction format. Draw instruction format for INTEL Processor and explain various fields in it.
 [8]
 - (b) Explain with examples the following addressing modes of 8086:
 - (i) Immediate addressing mode
 - (ii) Register indirect addressing mode
 - (iii) Base index with displacement
 - (iv) Direct addressing mode.

[4657]-81 2

-	`	
•		r
ι	,	,

4.	(a)	Draw timing diagram for memory read cycle of 8086 in
		Minimum Mode and list operations in each T state. [8]
	(<i>b</i>)	Write a note on MAX/MIN mode of 8086. [8]
5.	(a)	Draw and explain single bus organization of the CPU, show-
		ing all the registers and data paths. [8]
	(<i>b</i>)	Explain design of multiplier control unit using delay element
		method. [8]
		Or
6.	(a)	Explain the sequence of operations needed to perform
		processor functions: [8]
		(i) Fetching a word from memory
		(ii) Performing an arithmetic or logical operation.
	(<i>b</i>)	Compare:
		(i) Horizontal and vertical microinstruction representation
		(ii) Hardwired and microprogrammed control unit. [8]
[465]	7]-81	3 P.T.O.

SECTION II

7.	(a)	What is cache coherence and discuss MESI protocol ? [8]
	(<i>b</i>)	Discuss set associative and fully associative cache mapping
		techniques with respect to mapping function, address struc-
		ture, merits and demerits. [10]
		Or
8.	(a)	What is virtual memory ? Explain address translation mecha-
		nism for converting virtual address into physical address
		with neat diagram. [10]
	(<i>b</i>)	Write short notes on (any two): [8]
		(1) SRAM
		(2) DVD
		(3) RAID
		(4) EEPROM.
9.	(a)	What is DMA ? Explain DMA operation with a diagram.
		Also explain data transfer modes in DMA. [8]
	(<i>b</i>)	Compare: [8]
		(i) Memory mapped I/O and I/O mapped I/O
		(ii) Programmed I/O and interrupt driven I/O.
[4657	']-81	4

(7	r
·	,	,

10.	(a)	List the features of IC 8255 and IC 8251.	[8]	
	(<i>b</i>)	Explain the working principle of the following:	[8]	
		(1) Laser printer		
		(2) Video displays.		
11.	(a)	Compare closely coupled and loosely coupled multiprocess	or	
		configurations. Explain loosely coupled multiprocessor		
		configuration. [10]		
	(<i>b</i>)	What is cluster? State the advantages of clustering.	[6]	
		Or		
12.	(a)	Compare the following:	[8]	
		(i) RISC and CISC		
		(ii) UMA and NUMA.		
	(<i>b</i>)	Explain briefly:	[8]	
		(i) Instruction level pipelining		
		(ii) Superscalar architecture.		