NOV- Dec- 2010

Sem-I

Total No. of Questions—12]

[Total No. of Printed Pages-4

[3862]-221

S.E. (IT) (First Semester) EXAMINATION, 2010 COMPUTER ORGANIZATION

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B.:— (i) Answer three questions from Section I and three questions from Section II
 - (ii) Answers to the two sections should be written in separate answer- books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

1. (a) Explain Booth's Algorithm to multiply the following pair of two's signed complements numbers: [10]

A = 110011 (Multiplicand)

B = 101100 (Multiplier).

(b) Explain floating point multiplication with the help of flow chart as well as algorithm. [8]

Ur

2. (a) Perform the following division using restoring division algorithm: [8]

Dividend = 1001

Divisor = 0101.

P.T.O.

		www.sppuonlin	e.com
	(b)	Explain IEEE floating point formats.	[5]
	(c)	Explain the flow chart for floating point addition.	[5]
	. · ·		
3.	(a)	Draw and explain architecture of 8086.	[8]
	(<i>b</i>)	Draw and explain read cycle of 8086 with a neat diagram.	[8]
		Or	in the second
4.	(a)	State the factors in the design of instruction format. Dr	raw
		instruction format for intel processors and explain various fie	elds
		in it.	[8]
	(<i>b</i>)	State and explain any 4 addressing modes with examples	for
	* 1.5	INTEL processors.	[8]
•	· ,		
5.	(a)	Write the control sequence for the following instruction:	[8]
		MOV (R3), R1.	
	(<i>b</i>)	Draw and explain micro-programmed control unit.	[8]
		Or	
6.	(a)	Write a micro-program of micro-instructions for the follow	ing
		instruction:	[8]
		ADD (R3), R1.	
	(<i>b</i>)	Compare the following:	[8]
:		(i) Hardwired and micro-programmed control unit	
		(ii) Horizontal and Vertical micro-Instruction format.	

SECTION II

7.	(a)	Explain Set-Associative mapping technique with example. [8
-	(<i>b</i>)	A block Set-Associative mapped cache consists of 64 block
		divided into 4 block sets. The main memory contains 4090
		blocks, each consisting of 128 words of 16-bits length: [10
		(i) How many bits are there in main memory?
		(ii) How many bits are there in TAG, BLOCK and WORI
		fields ? Or
8.	Write	e short notes on $(any four)$: [18
	<i>(i)</i>	EEPROM
	(ii)	RAID
	(iii)	SDRAM
	(iv)	DVD
	(v)	Magnetic Disk
	(vi)	Optical Disk.
9.	Expla	ain techniques for performing IO and compare them. [16
		Or
10.	(a)	Explain PCI bus with a neat diagram. [6]
	(<i>b</i>)	Explain functions and features of 8255 and 8251. [10]

www.sppuonline.com

- 11. (a) Compare closely coupled and loosely coupled Multiprocessor configurations. Explain loosely coupled multiprocessor configuration.

 [10]
 - (b) Explain instruction level pipelining with a diagram. [6]

 Or
- 12. Write short notes on the following (any four): [16]
 - (i) NUMA
 - (ii) UMA
 - (iii) RISC
 - (iv) CISC
 - (v) Cluster
 - (vi) Superscalar Architecture conline.com