Total No. of Questions—8]

[Total No. of Printed Pages—5

Seat	
No.	

[5559]-143

S.E. (E&TC/Elect.) (II Semester) EXAMINATION, 2019

ENGINEERING MATHEMATICS—III

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagram must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, electronic pocket calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Solve the following differential equations (any two): [8]

$$(i) \qquad \frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$$

(ii)
$$\frac{d^2y}{dx^2} - y = \frac{1}{(1+e^{-x})^2}$$
 (By variation of parameter)

(iii)
$$(1 + x)^2 \frac{d^2y}{dx^2} + (1 + x)\frac{dy}{dx} + y = 4 \cos(\log(1 + x))$$

(b) Find the Fourier transform of a function $f(x) = e^{-|x|}$. [4]

- 2. (a) An electric circuit consist of an inductance 'L', condenser of capacity 'C' and emf $E_0^{-\sin \omega t}$ that the charge satisfy the differential equation $\frac{d^2Q}{dt^2} + \frac{Q}{LC} = \frac{E_0}{L} \sin \omega t$. If $\omega^2 = \frac{1}{LC}$ and initially t = 0, Q = 0 and t = 0, find the charge at any time 't'.
 - (b) Solve any one: [4]
 - (i) Find the z-transform of a function $f(k) = k^2 a^k$, $k \ge 0$.
 - (ii) If $f(z) = \frac{z}{\left(z \frac{1}{4}\right)\left(z \frac{1}{5}\right)}$, then find $z^{-1}(f(z))$ for $|z| > \frac{1}{4}$.
 - (c) Solve the following difference equation 12f(k+2) 7f(k+1) + f(k) = 0; f(0) = 0, f(1) = 3, $k \ge 0$. [4]
- 3. (a) Find Lagrange's interpolating polynomial passing through set of points:

x	0	1	2
У	4	3	6

Use it to find y at
$$x = 1.5$$
; $\frac{dy}{dx}$ at $x = 0.5$. [4]

(b) Use Runge-Kutta method of fourth order to obtain the numerical solutions of $\frac{dy}{dx} = x^2 + y^2$, y(1) = 1.5 in the interval (1, 1.1) with h = 0.1.

[5559]-143

(c) Find the directional derivative of $\phi = xy^2 + yz^3$ at (1, -1, 1) along the vector $\overline{i} + 2\overline{j} + 2\overline{k}$. [4]

Or

- 4. (a) Show that (any one): [4]
 - (i) $\nabla \left(\frac{\overline{a}.\overline{r}}{r^5}\right) = \frac{\overline{a}}{r^5} \frac{5(\overline{a}.\overline{r})\overline{r}}{r^7}$
 - $(ii) \qquad \nabla \cdot \left\lceil r \nabla \left(\frac{1}{r^3} \right) \right\rceil = \frac{3}{r^4} \cdot$
 - (b) If the vector field $\overline{F} = (x + 2y + az)\overline{i} + (bx 3y z)\overline{j} + (4x + cy + 2z)\overline{k}$ is irrotational, find a, b, c and determine ϕ such that $\overline{F} = \nabla \phi$.
 - (c) Evaluate $\int_{0}^{3} \frac{dx}{1+x}$ dividing the interval into 6 parts by using Simpson's $\frac{3}{8}$ th rule. [4]
- 5. (a) Evaluate $\int_{c} \overline{F} \cdot d\overline{r}$ for $\overline{F} = 2xy\overline{i} + (x^2 i)\overline{j} + yz\overline{k}$ along a straight line joining (0, 0, 0) and (1, 2, 1). [4]
 - (b) Use Stokes' theorem to evaluate $\int\limits_{c}(2y\overline{i}+z\overline{j}+3y\overline{k}).d\overline{r}$ where c is boundry of rectangle $0 \le x \le 2$, $0 \le y \le 3$, z=1. [4]
 - (c) By using Gauss-Divergence theorem evaluate $\iint\limits_{S}(x^3\overline{i}+y^3\overline{j}+z^3\overline{k}).d\overline{s}$ over the surface of sphere $x^2+y^2+z^2=1.$ [5]

[5559]-143 3 P.T.O.

- 6. (a) Using Green's theorem evaluate $\int_{c} (2-xy)dx + y^2 dy$ over boundary of region enclosed by parabola $y^2 = x$, line x = 1 and x-axis in first quadrant. [4]
 - (b) By using Stokes' theorem evaluate $\iint_{S} (\nabla \times \overline{F}) . d\overline{s}$ where $\overline{F} = y\overline{i} + (x 2xz)\overline{j} xy\overline{k}$ over surface of hemisphere $x^2 + y^2 + z^2 = a^2$ over xy-plane. [5]
 - (c) By using Gauss-Divergence theorem evaluate $\iint_{S} (2xy\overline{i} + yz^{2}\overline{j} + x^{2}y\overline{k}).d\overline{s} \text{ over total surface of region bounded}$ by x = 0, y = 0, z = 0, y = 3 and x + 2z = 6. [4]
- 7. (a) If f(z) = u + iv is an analytic function show that : [4] $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) |f(z)|^2 = 4 |f'(z)|^2.$
 - (b) Evaluate: [5] $\int_{c}^{c} \frac{4z^{2}+z}{z^{2}-1} dz \text{ where } c \text{ is } |z-1| = \frac{1}{2}.$
 - (c) Find the bilinear transformation which maps the points z=2, 1, 0 from z-plane onto the points w=1, 0, i of w-plane. [4]

[5559]-143

Or

- 8. (a) If $u = 3x^2 3y^2 + 2y$ find v, such that the function f(z) = u + iv is an analytic function. [4]
 - (b) Evaluate $\int_{c} \frac{4-3z}{z(z-1)(z-2)} dz$ where c is the contour |z| = 3/2. [5]
 - (c) Find image of X-axis under the transformation $w = \frac{i-z}{i+z}$. [4]