Tota	l No.	of Questions : 12]	SEAT No.:	
P36	20		[Total No. of Pages :	: 4
		[5154]-123	-	
		B.E. (E & TC)	NICATION	
		OPTICAL FIBER COMMU	NICATION	
		(2008 Pattern)		
Time	e:3 F	Hours]	[Max. Marks: 10	00
Insti	ructio	ons to the candidates:		
	1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6 from Q10, Q11 or Q12 from Section - II.	Section - I and Q7 or Q8, Q9	01
	<i>2)</i>	Answers to the two sections should be writte	n in separate answer-books.	
	3)	Figures to the right indicate full marks.		
	4)	Your answer will be valued as a whole.	æ	
	5)	Neat diagrams must be drawn wherever ned	cessary.	
	<i>6)</i>	Assume suitable data, if necessary.	2	
	_	SECTION -	Į.	
Q1)	a)	Explain the terms: mode field diameter, sp	ot size and cut off waveleng	th
Q1)	a)	for single mode fibers.		6]
		Tot single mode moets.	L	V _J
	b)	A multimode step index fiber with a core di	ameter of 80 µm and a relative	ve
		index difference of 1.5% is operating at a	wavelength of 0.85 µm. If the	he
		core refractive index is 1.48 estimate the	normalized frequency for the	he
		fiber and number of guided modes.		6]
	c)	State advantages and disadvantages of va	nour phase decomposition	in
	<i>C)</i>	the preparation of glass for optical fiber.		6]
				٠,
		OR	9, 9,	
<i>Q2)</i>	a)	Compare and Contrast Multimode and Sin	ngle mode fiber.	6]
	b)	A multimode step index fiber has a relative	refractive index difference	of
	-	1% and a core refractive index of 1.5. the		
		at a wavelength of 1.3 µm is 1100	6 5	6]
		Estimate the diameter of the fiber core	7 0/9	

With the help of neat diagram explain the principle of total internal

P.T.O.

[6]

c)

reflection.

Q3)	a)	Explain the various attenuation mechanisms in optical fiber. Sketch attenuation characteristics w.r.t. wavelength for a fiber. Hence indicate the three windows of transmission for the optical fiber communication. [8]
	b)	What are the major requirements of an optical source to be used as a light source in optical fiber communication. [8]
		OR
<i>O4</i>)	a)	What are advantages of LED over ILD as optical source? Why LED is
~		preferred as light source for analog link rather than ILD? Support your
		answer with a suitable diagram. [8]
	b)	Explain various types of Dispersion mechanisms observed in optical
		fiber. [8]
		9.
Q5)	a)	Explain Dispersion shifted fibers and dispersion flattened fibers. [8]
	b)	Radiative and non-radiative recombination lifetimes for minority carriers
		in the active region of a double-heterojunction LED are 60ns and 100ns
		respectively. Determine the total carrier recombination lifetime and the
		power internally generated within the device when the peak emission
		wavelength is 0.87 µm at a drive current of 40 mA. [8]
		OR
Q 6)	a)	Sketch and explain: [8]
		i) Insertion loss characteristics for jointed fibers with various types
		of misalignments.
		ii) Various mismatch losses at the fiber joints.
	b)	Explain fiber optic splices. What are different types of splices? Draw
		diagram and explain any one type of splice. How splice differs from a
		connector? [8]
		29.

SECTION - ID

- **Q7)** a) Explain the following factors limiting the speed of response of a photo diode: [10]
 - i) Drift time of carriers
 - ii) Diffusion time
 - iii) Time constant

A silicon p-i-n photodiode has 25 μ m depletion layer width and carrier velocity 3×104 m/s. Determine the maximum bandwidth and the corresponding response time for the device.

b) Explain the terms quantum efficiency and responsivity of a photo detector. How are these terms related to each other? [8]

OR

- **Q8)** a) Explain the working of PIN photo detector with relevant diagrams. Compare and contrast performance of PIN and APD as photo detector in optical fiber communication. [10]
 - b) A photodiode has a quantum efficiency of 65% when photons of energy 1.5×10^{-19} J are incident upon it. [8]
 - i) At what wavelength is the photodiode operating?
 - ii) Calculate the incident optical power required to obtain a photocurrent of $2.5 \mu A$ when the photodiode is operating as above.
- **Q9)** a) Draw the block diagram of an analog optical fiber link and state the major noise contributors. Explain carrier to noise ratio and relative intensity noise with reference to analog link. [8]
 - b) The following parameters are established for a long-haul single-mode optical fiber system operating at a wavelength of 1.3 μm: [8]

Mean power launched from the laser transmitter: –3 dBm

Cabled fiber loss: 0.4 dB km⁻¹

Splice loss: 0.1 dB km⁻¹

Connector losses at the transmitter and receiver: 1 dB each

[5154]-123

Mean power required at the APD receiver:

when operating at 35 Mbit s⁻¹ (BER 10^{-9}): -55 dBm when operating at 400 Mbit s⁻¹ (BER 10^{-9}): -44 dBm

Required safety margin: 7 dB

Estimate:

- i) The maximum possible link length without repeaters when operating at 35 Mbit s^{-1} (BER 10^{-9}). It may be assumed that there is no dispersion–equalization penalty at this bit rate.
- ii) The maximum possible link length without repeaters when operating at 400 Mbit s⁻¹ (BER 10⁻⁹) and assuming no dispersion—equalization penalty.

OR

- Q10)a) Describe digital link budget. Explain link power budget analysis and system rise time budget. [8]
 - b) An optical fiber system is to be designed to operate over an 8km length without repeaters. [8]

The rise times of the chosen components are:

Source (LED):

8 ns

Fiber: Intermodal:

www.sppuonline.coms km-1

(Pulse broadening) intramodal:

 1 ns km^{-1}

Detector (p-i-n photodiode):

6 ns

From the system rise time considerations, estimate the maximum bit rate that may be achieved on the link when using an NRZ and RZ format.

- Q11)a) Explain in detail the architecture and working of EDFA. What are noises observed in EDFA[8]
 - b) Draw block schematic of WDM and explain its working. Specify range of wavelengths commonly used for WDM. [8]

OR

- Q12)a) Explain various applications of optical amplifiers. Support your answer with suitable diagram.[8]
 - b) Explain usage of optical couplers. How they differ from connectors?[8]

* * *

[5154]-123