
[4459] - 186

Seat	
No.	

T.E. (Electronics & Telecommunication) Examination, 2013 SIGNAL CODING & ESTIMATION THEORY (304187) (2008 Pattern)

Time: 3 Hours]

[Max. Marks: 100

Instructions: 1) Answerthree questions from Section-I & three questions from Section-II.

- 2) Answers to the two sections should be written in separate answer books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable data if necessary.
- 5) Use electronic pocket calculator is allowed.
- 6) Figures to the right indicate full marks.

SECTION - I

 a) Why Huffman encoding process is not unique. Explain with suitable examples.

[10]

b) A zero memory source emits six messages X_1 , X_2 , X_3 , X_4 , X_5 , X_6 with probabilities

0.3, 0.1, 0.02, 0.15, 0.4, 0.03 respectively.

- i) Calculate entropy of source.
- ii) Determine Shannon fano code and calculate efficiency.

[8]

OR

2. a) Explain lossless deterministic and Binary symmetric channel with channel diagram and calculate capacity of each channel. [12]

b) Find Mutual information for the channel matrix given below.

$$P(X,Y) = \begin{bmatrix} 0.3 & 0.05 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0.15 & 0.05 \\ 0 & 0.05 & 0.15 \end{bmatrix}$$
 [6]

P.T.O.

[4459] - 186

-2-

3. a) Explain Rate Distortion theory and rate distortion function

[8]

b) The parity check matrix of a (7, 4) Hamming code is given as follows:

$$H = \begin{bmatrix} 1110100 \\ 0111010 \\ 1101001 \end{bmatrix}$$

- 1) Find generator Matrix.
- 2) Find out all possible codewords.
- 3) Determine error correcting cabability.

[8]

OR

4. a) Construct a systematic (7,4) cyclic code using the generator polynomial $g(x)=x^3+x+1$.

What are the error correcting capabilities of this code? Construct the decoding table and for the received codeword 1101100, determine the transmitted data word.

[10]

b) Explain sphere packing problem.

[6]

5. a) A convolution encoder is rate 1/3 and constraint length K=4

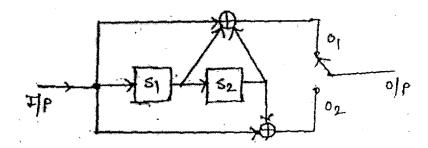
$$g^1 = 1 + D + D^2 + D^3$$

$$g^2=1+D^2+D^3$$

$$g^3=1+D+D^3$$

- i) Draw Encoder diagram
- ii) Draw state diagram
- iii) Find out the output for message input of 10011.

[12]


b) Explain ARQ system

[4]

OR

[6]

6. a) For the convolution encoder with constraint length of 3 and rate $\frac{1}{2}$ as shown in Fig. Draw the state diagram and trellis diagram. By using viterbi algorithm decode the sequence 010001000. [10]

b) Explain Euclidean distance, Asymptotic coding gain of Trellis coded Modulation

SECTION-II

- 7. a) Consider the BCH (15,5) triple error correcting code with the generator polynomial g(x)=x¹⁰+x⁸+x⁵+x⁴+x²+x+1. Find the error using Gorenstein Zierler algorithm in receiverd polynomial x⁶+x⁴. [10]
 - b) Explain Monoalphabetic and Polyalphabetic substitution Cipher. [8]
- 8. a) Design a (15,9) RS code. Find systematic code whose message polynomial is given as $\alpha^2 x^2+1$. [10]
 - b) Explain JPEG compression standards and its application. [8]

OR

- 9. a) Explain Recursive Least square estimation [8]
 - b) Suppose that three measurements of signal $S_k = \theta \exp(k/2)$, where θ is the parameter to be Estimated, are given by $y_1 = 1.5$, $y_2 = 3$ and $y_3 = 5$. Find the least square estimate of θ . [8]

OR

- 10. a) State and explain Cramer-Rao Inequality for a Random Parameter. [8]
 - b) Explain best linear unbiased Estimation. [8]

[4459] - 186

11. a) Derive the expression for minimax cost.

- [8]
- b) What is Bayes criteria. Derive the expression for Bayes decision rule. Under what condition Bayes criteria reduces to LRT and MAP.

[8]

OR

12. a) Explain how decision rule is framed in case of multiple hypothesis tests. [8]

b) For a binary decision problem the PDF s are given as $p(y/H_n)=1/2e^{-|y|}$ and $p(y/H_1)=e^{-|2y|}$. The costs associated with decision are $C_{00}=C_{11}=0$ and $C_{01}=1$, $C_{10}=2$ and $P(H_1)=0.75$.

Determine the Bayes decision rule.

[8]

www.sppuonline.com

B/II/13/