Total No. of Questions :6]

SEAT No.	:	
DESITE TOO	•	

[Total No. of Pages :2

P88

APR. -16/TE/Insem. - 20 T.E.(E&TC)

ANTENNA&WAVE PROPAGATION (2012 Pattern) (Semester - II)

Time: 1Hour] [Max. Marks:30

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data, if necessary.
- Q1) a) Derive an expression of wave equation in terms of an electric field& magnetic field.[5]
 - b) A wave of frequency 1MHZ travels in a large block of copper $(\sigma=5.7*10^7, \varepsilon_r=1)$ and $\mu r=1$. Determine the values of η , α , β , the phase shift between the electric and magnetic field and the distance that the wave must travel to be attenuated by the factor 37%.

OR

- Q2) a) Derive an expression for transmission & reflection coefficient for normal incidence between free space and perfect conductor.[5]
 - b) An uniform plane wave in free space is propagating in the \mathbf{a}_y direction at frequency of 10 MHz if, E=400 \cos ot az V/m. at y=0. Write the expression for E(x,y,z,t),H(x,y,z,t) and Es(x,y,z). [5]
- Q3) a) Explain in brief factors affecting the performance of mobile communication channel.[4]
 - b) Explain the following term.

[6]

- i) Virtual height
- ii) Skip distance
- iii) MUF

OR

- **Q4)** a) What are the Ionospheric abnormalities and how they affect wave propagation? [5]
 - b) Calculate the critical frequency and maximum usable frequency(MUF) of F2 layer if its density 3×10⁵/cm³ if the angle of incidence is 30 degree.

[5]

Q5) a) Explain the following antenna parameters.

[6]

- i) Radiation Intensity
- ii) Antenna efficiency
- iii) Effective Length
- b) Determine the electrical field intensity at a distance of 10KM from an antenna having directive gain of 5 dB& radiating a total power of 20 KW.

 [4]

OR

- **Q6)** a) Draw radiation pattern and half power beam width of a antenna a given by, $U(\theta) = \cos\theta$, for $0 \le \theta \le \pi / 2$ and $0 \le \Phi \le 2\pi$. [4]
 - b) Explain following term related to antenna with mathematical expression. [6]
 - i) Directivity.
 - ii) Aperture area.
 - iii) Gain of Antenna.

