[6]

UNIVERSITY OF PUNE [4363]-183

T. E.(Electronics & Telecomm-Semester-I) Examination - 2013 NETWORK SYNTHESIS & FILTER DESIGN(304183) (2008 Pattern)

[Total No. of Questions:] [Total No. of Printed Pages :4] [Time: 3 Hours] [Max. Marks: 100]

Instructions:

- (1) Answer any three from each Section.
- (2) Answers to the two sections should be written in separate answer-books.
- (3) Black figures to the right indicate full marks.
- (4) Neat diagrams must be drawn wherever necessary.
- (5) Use of electronic pocket calculator is allowed.
- (6) Assume suitable data, if necessary.

SECTION -I

- Q.1 a)Define the terms causality & realizability state and explain the condition for stability of a network
 - b) What is positive real function? State the necessary and sufficient [6] condition for a function to be positive real.
 - c) Test whether following polynomial are Hurwitz [6]
 - i) $S^4 + S^3 + 4S^2 + 2S + 3$
 - ii) $S^4 + S^3 + 5S^2 + 3S + 4$

OR

- Q.2 a) Explain the following removal operations
 - i) Removal of pole at $s=\infty$ from given function
 - ii) Removal of pole at s = o from given function
 - b) Test whether the following function are positive real [6]
 - i) $F(s) = \frac{S^2 2s + 25}{s^2 + 5s + 16}$
 - ii) $F(s) = \frac{3S^2 + 5}{s(s^2 + 1)}$

c) A network shown in **figure1** has driving point impedance Z(s) with the poles and zeros located at the following places. [6]

Poles at $-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$ and zero at -1. If $Z(0) = 1 \Omega$ Determine the values of component R, L and C.

- Q. 3 a) State properties of L-C driving point impedance of admittance function[4]
 - b) Realize the following R-C driving point impedance function in [6]
 - i) Foster I form ii) Caner I from

$$Z(s) = \frac{S^2 + 6s + 8}{s^2 + 4s + 3}$$

c) Identify the following R-C network function and synthesize the same. [6]

$$Z(s) = \frac{s^{2+} 2s + 2}{s^2 + s + 1}$$

OR

- Q.4 a) Identify the following network function with proper justification $F(s) = \frac{2(s+2)(s+4)}{(s+3)(s+6)}$ Synthesize the same using foster II form.
 - b) State properties of RL driving point impedance function. Draw and explain reactance curves for R-L network
 - c) Synthesize the following L-C function using Cauer –I form [6]

$$Z(s) = \frac{S^2 + 10s^3 + 12s}{s^4 + 4S^2 + 3}$$

Q.5 a) What is meant by zeros of transmission? Determine ZOTs of the network shown in **figure 2**

- b) Synthesize the voltage ratio $\frac{V_2}{V_1} = \frac{S^2 + 1}{S^2 + 2S + 1}$ as a constant resistance [6] bridged T network terminated in a 1 Ω resistor
- c) State properties of transfer function. Obtain transfer function of two [6] part network in terms of z parameters

OR

Q.6 a) State reside condition. Determine whether the reside condition holds [4] for following network shown in **figure 3**

- b) Synthesize $Z_{21}(s) = \frac{2}{s^3 + 3s^2 + 4s + 2}$ into L-C ladder network with 1 Ω termination. [6]
- c) Realize the following voltage ratio transfer function using a constant [6] resistance lattice network with 1 Ω termination.

$$\frac{V_2}{V_1} = \frac{4}{s+6}$$

SECTION – II

- Q.7 a) State properties of a Buffer worth filter obtain transfer function and [12] realize third order normalized LPF Butterworth filter convert if into LPF with out-off frequency $W_c = 10^4$ rad/see and load impedance of 500 Ω
 - b) Write short note on frequency Transformation [6]

OR

[8]

- Q.8 a) Synthesize a chebysher LPF to meet following specifications [18]
 - i) Load resistance 600 Ω
 - ii) $\frac{1}{2}$ db ripple with pass bond
 - iii) Cut-off frequently 5 x 10⁵ rad/see
 - iv)At 1.5×10^6 rad/ see magnitude must be down 30 db.
- Q.9 a) Explain with suitable example the coefficient matching technique for [8] obtaining element values.
 - b) Explain the position feedback topology used in active filter design and [8] obtain it's transfer function.

OR

Q.10 a) Synthesize the following HPF function using RC-CR transformation [8] on sullen key LPR

$$H_{HP}$$
 (s) = K $\frac{S^2}{S^2 + s + 25}$

- b) Write short note on
- i) FDNR ii) Gyrator
- Q.11 a) What is multi element deviation? Define variability and device [8] expression for per unit change in parameter p due to simultaneous variation in all element
 - b) For the network shown in **figure 4** determine the transfer function [8] Vo/I_{in} and compute sensitivity of Qp, Wp and k with respect to the passive element R, L, C. (8)

OR

- Q.12 a) Discuss the effect of parameter of OP-AMP on the performance of active filters.
 - b) Explain the concept of gain sensitivity. Explain the various factors [8] affecting gain sensitivity