Total	No d	of Questions: [12] SEAT NO.:						
[Total No. of Page								
T.E. 2008 (Electronics & Telecommunications)								
Digital Signal Processing								
		(Semester - II)						
Time:			s : 100					
1) 2) 3) 4)	3) Figures to the right side indicate full marks.4) Use of Calculator is allowed.							
		SECTION I						
Q1)	a)	State any four advantages of Digital Signal Processing over Analog Signal Processing.	[4]					
	1 \	Obtain the direct form I, direct form II realization of the following system	[8]					
	b)	y(n) - 0.2y(n-1) + 0.3y(n-2) = x(n)+3.6x(n-1)+0.6x(n-2)						
	c)	Determine the impulse response h(n) for the system described by the second –order difference equation $y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$	[6]					
		OR						
Q2)								
	a)	Perform the convolution on the following sequence	[8]					
		i) x(n) = { 3 2 4 1) , h(n) = (1 2 1 2)						
		ii) $x(n) = a^n u(n)$, $h(n) = b^n u(n)$ if $a = b$						
	b)		[6]					
		Comment on stability of Linear Time –Invariant systems						
	c)		[4]					
		The impulse response of LTI system is $h(n) = \{1, \frac{2}{4}, 1, -1\}$						
		Determine the response of the system to the input signal $x(n) = \{1,2,3,1\}$						

www.sppuonline.com

		•	ww.sppuomi
Q3)	a)	State and prove the following properties of Z transform	[6]
		i) Convolution of two sequences	
İ		ii) Differentiation in Z domain	
	b)	State and prove the relationship between Z transform and DFT	[2]
	c)	Determine the Z transform and sketch the ROC of the following signals	[8]
		i) $x(n) = -a^n u(-n-1)$	
		ii) $x(n) = a^n u(n) + b^n u(-n-1)$	
		OR	
Q4)	a)	A linear time –invariant system is characterized by the system function	[8]
		$H(z) = 3-4 z^{-1}$	
		1-3.5 z ⁻¹ + 1.5 z ⁻²	
		Specify the ROC OF H(z) and determine h(n) for the following conditions:	
		i)The system is stable	
		ii) The system is causal	
		iii)The system is anticausal	
	b)	Determine the Inverse Z transform the following signals	[8]
		i) H(z)= ROC: z > 1	
		$1-1.5 z^{-1}+0.5 z^{-2}$	
		ii) X(z) = for the causal signal	
		$(1+z^{-1})(1-z^{-1})^2$	
Q5)	a)		[8]
		State and prove any four properties of DFT	
	b)		[4]
		Derform the circular convolution of the following converses	
		Perform the circular convolution of the following sequences	
		$x1(n) = \{1, 2, 3, 4\}$ $x2(n) = \{2, 1, 2, 1\}$	

www.sppuonline.com

			эррионн
	c)		[4]
		Compute four point DFT of the following sequence $x(n) = \{1, 2, 3, 4\}$	
		OR	
Q6)	a)		[8]
(3)			[-,]
		Find the DTFT of the following sequence of length L.	
		x(n) = A for $0 < n < L-1$	
		= 0 Otherwise	
	b)		[8]
		Compute the eight point DIT-FFT of the following sequence	
		1 0 < n <= 7	
		x(n) =	
		0 otherwise	
		SECTION II	
Q7)	a)	Use frequency sampling method to design a lowpass filter to meet the following	[10]
		specifications. N = 9. Sampling frequency = 18000 samples/sec.	
		Passband = 0-5 KHz	
		r asspana – 0-5 Kriz	
	b)	Show that the impulse response coefficients of a linear phase FIR filter with positive symmetry, for N even, is given by	[8]
		$h(n) = \frac{1}{N} \left[\sum_{k=1}^{\frac{N}{2}-1} 2 H(k) \cos[2\pi k(n-\alpha)/N] + H(0) \right]$	
		where α =(N-1)/2 and H(k) are the samples of the frequency response of the filter taken in the frequency range of (0 – 2 π).	
		OR	
Q8)	a)	Design a digital low pass filter with a 3- db cutoff frequency of ω_c =0.2 π by applying the	[4]
		bilinear transformation to the analog butterworth filter	
		$H_{a}(s) = \frac{1}{1+s/\Omega_{c}}$	
	b)	Show that the bilinear transformation maps $j\Omega$ -axis in the s-plane onto unit circle in z-	[4]
		1	l .

		WWW.	sppuonli
		plane, and maps the left half s-plane inside the unit circle in z-plane.	
	c)	Design a digital low-pass filter to meet the following specifications.	[10]
		Passband cutoff frequency = $\pi/2$	
		Stopband cutoff frequency = $3\pi/4$	
		Minimum passband gain= 0.9	
		Maximum stopband gain= 0.2	
		Use Butterworth approximation and Bilinear transformation.	
Q9)	a)	Explain sampling rate conversion by a non-integer factor	[8]
	b)	What is the need of antialiasing filter prior to down sampling and anti-imaging filter after up sampling a signal?	[8]
		OR	
Q10)	a)	What is the need of polyphase interpolation? Explain in detail polyphase interpolator.	[8]
	b)	Explain application of DAC in compact disc Hi-Fi systems.	[8]
Q11)	a)	Explain the desirable architectural features for selecting a digital signal processor.	[8]
	b)	Write short note on	[8]
		i) Pipelining	
		ii) MAC Unit	
		OR	
Q12)	a)	Explain five important salient features of TMS 320C6713 digital signal processor and	[8]
		draw its functional block diagram.	
	b)	Write short note on	[8]
		i) Harvard Architecture	
		ii) Barrel Shifter	