\square
[Total No. of Pages : 4]

T.E. 2008 (Electronics \& Telecommunications)

Digital Signal Processing (Semester - II)

Time: 3 Hours

Max. Marks : 100
Instructions to the candidates:

1) Answers to the two sections should be written in separate answer books.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of Calculator is allowed.
5) Assume Suitable data if necessary

SECTION I			
Q1)	a)	State any four advantages of Digital Signal Processing over Analog Signal Processing.	[4]
	b)	Obtain the direct form I, direct form II realization of the following system $y(n)-0.2 y(n-1)+0.3 y(n-2)=x(n)+3.6 x(n-1)+0.6 x(n-2)$	[8]
	c)	Determine the impulse response $h(n)$ for the system described by the second -order difference equation $y(n)-3 y(n-1)-4 y(n-2)=x(n)+2 x(n-1)$	[6]
		OR	
Q2)	a)	Perform the convolution on the following sequence i) $x(n)=\left\{\begin{array}{llll}3 & 2 & 4 & 1\end{array}\right), h(n)=\left(\begin{array}{llll}1 & 2 & 1 & 2\end{array}\right)$ ii) $x(n)=a^{n} u(n), h(n)=b^{n} u(n) \quad$ if $\quad a=b$	[8]
	b)	Comment on stability of Linear Time -Invariant systems	[6]
	c)	The impulse response of $L T I$ system is $h(n)=\{1,2,1,-1\}$ Determine the response of the system to the input signal $x(n)=\{1,2,3,1\}$	[4]

Q3)	a)	State and prove the following properties of Z transform i) Convolution of two sequences ii) Differentiation in Z domain	[6]
	b)	State and prove the relationship between Z transform and DFT	[2]
	c)	Determine the Z transform and sketch the ROC of the following signals i) $\quad x(n)=-a^{n} u(-n-1)$ ii) $\quad x(n)=a^{n} u(n)+b^{n} u(-n-1)$	[8]
		OR	
Q4)	a)	A linear time -invariant system is characterized by the system function $H(z)=\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}}$ Specify the ROC OF $H(z)$ and determine $h(n)$ for the following conditions: i)The system is stable ii) The system is causal iii)The system is anticausal	[8]
	b)	Determine the Inverse Z transform the following signals i) $H(z)=$ $\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}$ ROC: $\|z\|>1$ ii) $X(z)=\frac{1}{\left(1+z^{-1}\right)\left(1-z^{-1}\right)^{2}}$ for the causal signal	[8]
Q5)	a)	State and prove any four properties of DFT	[8]
	b)	Perform the circular convolution of the following sequences $x 1(n)=\{1,2,3,4\} \quad x 2(n)=\{2,1,2,1\}$	[4]

	c)	Compute four point DFT of the following sequence $x(n)=\{1,2,3,4\}$	[4]
		OR	
Q6)	a)	Find the DTFT of the following sequence of length L. $\begin{aligned} x(n) & =A & & \text { for } 0<n<L-1 \\ & =0 & & \text { Otherwise } \end{aligned}$	[8]
	b)	Compute the eight point DIT-FFT of the following sequence $x(n)= \begin{cases}1 & 0<n<=7 \\ 0 & \text { otherwise }\end{cases}$	[8]
		SECTION II	
Q7)	a)	Use frequency sampling method to design a lowpass filter to meet the following specifications. $\quad N=9 . \quad$ Sampling frequency $=18000$ samples $/ \mathrm{sec}$. Passband $=0-5 \mathrm{KHz}$	[10]
	b)	Show that the impulse response coefficients of a linear phase FIR filter with positive symmetry, for N even, is given by $h(n)=\frac{1}{N}\left[\sum_{k=1}^{\frac{N}{2}-1} 2\|H(k)\| \cos [2 \pi k(n-\alpha) / N]+H(0)\right]$ where $\alpha=(\mathrm{N}-1) / 2$ and $H(k)$ are the samples of the frequency response of the filter taken in the frequency range of ($0-2 \pi$).	[8]
		OR	
Q8)	a)	Design a digital low pass filter with a $3-\mathrm{db}$ cutoff frequency of $\omega_{\mathrm{c}}=0.2 \pi$ by applying the bilinear transformation to the analog butterworth filter $\mathrm{H}_{\mathrm{a}}(S)=\frac{1}{1+s / \Omega_{c}}$	[4]
	b)	Show that the bilinear transformation maps $\mathrm{j} \Omega$-axis in the s-plane onto unit circle in z -	[4]

		plane, and maps the left half s-plane inside the unit circle in z-plane.	
	c)	Design a digital low-pass filter to meet the following specifications. Passband cutoff frequency $=\pi / 2$ Stopband cutoff frequency $=3 \pi / 4$ Minimum passband gain $=0.9$ Maximum stopband gain $=0.2$ Use Butterworth approximation and Bilinear transformation.	[10]
Q9)	a)	Explain sampling rate conversion by a non-integer factor	[8]
	b)	What is the need of antialiasing filter prior to down sampling and anti-imaging filter after up sampling a signal?	[8]
		OR	
Q10)	a)	What is the need of polyphase interpolation? Explain in detail polyphase interpolator.	[8]
	b)	Explain application of DAC in compact disc Hi-Fi systems.	[8]
Q11)	a)	Explain the desirable architecturalfeatyresforiselectinga digital signal processor.	[8]
	b)	Write short note on i) Pipelining ii) MAC Unit	[8]
		OR	
Q12)	a)	Explain five important salient features of TMS 320C6713 digital signal processor and draw its functional block diagram.	[8]
	b)	Write short note on i) Harvard Architecture ii) Barrel Shifter	[8]

