Total No	o. of Questions :12] SEAT No. :	
P1634		ges :3
	[5058] - 82	8
	T.E. (E & TC)	
	DIGITAL COMMUNICATION	
	(2008 Course) (Semester - I)	
Time : 3	B Hours] [Max. Mark	s:100
Instructi	ions to the candidates:	
1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6 from Section - I and Q7 or Q8, Q9 or Q11 or Q12 from section - II.	· Q10
2)	Figures to the right indicate full marks.	
3)	Neat diagrams must be drawn wherever necessary.	
	<u>SECTION - I</u>	
Q1) a)	Draw and explain block diagram of DPCM (Differential PCM), transfand receiver. Compare DPCM and DM.	nittei [10]
b)	A multifrequency signal is to be converted to digital form using I The frequencies contained in the signal are 2 kHz, 5 kHz, 8 kHz ar kHz. Find the minimum sampling rate. Also find the bandwidth for transmission if the number of bits are 8 per sample.	nd 10
	OR	
Q2) a)	If a TV signal of 4.5 MHz bandwidth is to be transmitted using 8 binary PCM.	- bi
	Determine:	[10]
	i) Maximum signal to Q-zation noise ratio	
	ii) The minimum bit rate	
	iii) Minimum transmission bandwidth needed. State advantages of I	PCM
b)	With the help of neat block schematic, explain Linear Predictive co	ding [8]
Q3) a)	With the help of block diagram, explain PCM-TDM system.	[8]
b)	With suitable example, explain scrambling and descrambling operate	

OR

[8]

- Q4) a) For the given data stream 1100101, draw various line codes such as NRZ, RZ, AMI and Manchester. [8]
 b) Derive power spectral density of NRZ-unipolar signal. [8]
 Q5) a) What is Bandpass Random process? Derive and sketch PSD of
- Q5) a) What is Bandpass Random process? Derive and sketch PSD of quadrature components of Bandpass Random process.[8]
 - b) If X (t) = A Cos ($\omega_c t + \phi$) is a random process where ϕ is a random variable which is uniformly distributed over $(0,2\pi)$. Determine Mean and auto correlation function for the same.

OR

- **Q6)** a) State and explain properties of auto correlation function. Prove these properties for a random process. [8]
 - b) Explain Gaussian Random Process. Show that mean of a stationary random process is a constant. [8]

SECTION - II

- **Q7)** a) Draw the basic block diagram of DPSK system. Draw necessary waveforms for the same. [10]
 - b) For an FSK system, the following data are observed.

Transmitted binary data rate = 2.5×10^6 bits/sec.

Power spectral density of noise = 10^{-20} W/Hz

Amplitude of received signal = $1 \mu V$.

Determine the average probability of symbol error assuming coherent detection. [8]

OR

- **Q8)** a) Draw and explain block diagram of GMSK modulation. Compare MSK with FSK. [10]
 - b) Considering the data stream 11100 draw waveforms for QPSK modulation system. [8]
- **Q9)** a) With the help of diagram explain Integrator and dump filter. [8]
 - b) For a binary baseband data the optimal receiver -5 mV for 0 and +5 mV for 1, corrupted with white Noise of PSD 10⁻⁹ W/Hz. With optimum decision threshold what is the probability of error in reception if data rate is 9600 bits/sec? [8]

OR

[5058] - 82

- **Q10)**a) Derive an expression of signal to Noise ratio of Matched filter. [8]
 - b) Explain the working of correlation receiver with neat diagram. [8]
- Q11)a) Draw and explain with the help of waveforms a fast hopping spread spectrum system. [8]
 - b) In a DSSS CDMA system the data rate fb = 6kbps and the chip rate fc = 12 Mb/s. What is the Jamming margin of an output SNR of 10 dB is required for a Pe = 10⁻⁵? Assume a system loss of 1.5 dB. [8]

OR

- Q12)a) Design a hypothetical experiment to measure path loss Ls at frequencies $f_1 = 30$ MHz and $f_2 = 60$ MHz when the distance between the transmitter and receiver is 100 km. Find the effective area of the receiving antenna and calculate the path loss in decibels for each case. [8]
 - b) Explain the terms.

[8]

- i) Cell
- ii) Frequency Reuse www.sppuonline.com
- iii) Duplexing
- iv) Cell splitting

