

 \sim

Seat	
No.	

T.E. Electronics and Telecommunication (Semester – I) Examination, 2013 CONTROL SYSTEMS (2008 Course)

Time : 3 Hours

Max. Marks : 100

[4459] - 181

SECTION-I

- 1. A) Explain the open loop and closed loop control systems with the help of suitable examples.
- 8
- B) Reduce the block diagram given in Fig. 1 and find the transfer function $\frac{Y(s)}{R(s)}$. 8

OR

8

8

4

[4459] - 181

2. A) Obtain the transfer function $\frac{Y(s)}{R(s)}$ of the signal flow graph given in Fig. 2 using Mason's gain formula.

-2-

- B) Explain any eight rules of block diagram reduction technique.
- 3. A) For the unity feedback system with open loop transfer function

$$G(s) = \frac{4(s^2 + 10s + 100)}{s(s+3)(s^2 + 2s + 10)}$$
 find the static error constants K_p, K_v, K_a and
the steady state error for the step input. 8

the steady state error for the step input.

B) Determine the stability of sixth order system with the characteristic equation $s^{6} + 2s^{5} + 8s^{4} + 12s^{3} + 20s^{2} + 16 = 0.$ 8 OR

4. A) Sketch the root locus of the unity feedback system with open loop transfer

function G(s)H(s) =
$$\frac{k}{s(s+5)(s+10)}$$
. 12

B) For the system with closed loop transfer function $G_{CL}(s) = \frac{100}{s^2 + 8s + 100}$. Determine the time domain specifications peak overshoot, rise time, peak time and settling time.

6

6

[4459] – 181

5. A) Sketch the Bode plot of the unity feedback system with transfer function

-3-

 $G(s)H(s) = \frac{1}{s(s+1)(s+10)}$, find gain margin, phase margin, gain crossover 12 frequency and phase crossover frequency and comment on the stability.

- B) Explain the following frequency domain specifications :
 - 1) Resonant peak
 - 2) Phase crossover frequency
 - 3) Gain margin.

OR

6. A) Sketch the Nyquist plot of the unity feedback system with transfer function

$$G(s) = \frac{40}{s(s+2)(s+10)}$$
 and comment on the stability. 12

B) Explain stability analysis using Bode plot.

- 7. A) Define terms
 - i) State ii) State variables 4
 - iii) State vector iv) State space.
 - B) What are the advantages of state space analysis over conventional control system analysis method? 4
 - C) Obtain the state transition matrix of the system with system matrix

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}.$$
OR

8. A) Consider a system having state model $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix} u$ and

$$u = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, with d = 0. Obtain its transfer function. 6

[4459] – 181

-4-

B) Obtain state model of the given electrical network in the standard form Given at $t = t_0$, $i(t) = i(t_0)$ and $v_0(t) = v_0(t_0)$. 6

	C) List any four properties of state transition matrix.	4
9.	A) Explain the architecture of PLC with the help of neat block diagram.	8
	B) Explain in brief P, PI, PD and PID controllers. OR	8
10.	A) Draw the PLC ladder diagram for the bottle filling plant process.	8
	B) Explain with suitable equations, the P, I, D, PI, PD and PID control actions.	8
11.	Write short notes on any two : 1) Model reference adaptive control 2) SCADA 3) DCS. OR	18
12.	A) Explain digital control system with the help of neat block diagram.	6
	B) Explain the concept of optimal control systems.	6
	C) Explain the concept of robust control systems.	6

B/II/13/