Total No. of Questions-8]

Seat No.	

[Total No. of Printed Pages-4
[4757]-1046
S.E. (E\&TC/Electronics Engineering) (Second Semester)

EXAMINATION, 2015
INTEGRATED CIRCUITS
(2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(i) Neat diagrams must be drawn wherever necessary.
(ii) Figures to the right indicate full marks.
(iii) Use of calculator is allowed.
(iv) Assume suitable data if necessary.

1. (a) Draw the block diagram of op-amp and explain the function of each block in detail.
(b) Compare different types of op-amp technologies.
(c) Explain the effect of temperature on :
(i) Input Bias Current
(ii) Input Offset Voltage
(iii) Input Resistance.
P.T.O.

Or

2. (a) Find the Q -point V_{C} and I_{B} for dual input balanced output differential amplifier when, $\mathrm{R}_{\mathrm{E}}=\mathrm{R}_{\mathrm{C}}=65 \mathrm{k} \Omega$.
Assume $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}, \beta=100$ for both transistors Q_{1} and Q_{2}; $\mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$.
(b) What is the need of frequency compensation ? Explain any one method of frequency compensation.
3. (a) Design a lossy integrator with square wave input of $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and 5 kHz frequency. Draw input and output waveforms.
(b) Explain with a neat circuit diagram working of symmetric Schmitt trigger using op-amp. Also derive the equation for the trigger points.

Or

4. (a) Design an adder using op-amp to get output expression as :

$$
\begin{equation*}
\mathrm{V}_{\mathrm{o}}=-\left(2 \mathrm{~V}_{1}+3 \mathrm{~V}_{2}+5 \mathrm{~V}_{3}\right) \tag{6}
\end{equation*}
$$

Where V_{1}, V_{2} and V_{3} are inputs.
(b) Draw and explain square wave generator using op-amp. [6]
5. (a) With a neat circuit diagram, explain voltage to frequency converter.
(b) Write a short note on Binary weighted Digital to Analog Converter (DAC).
(c) What output voltage would be proudced by a D/A converter whose output range is 0 to 10 V and input binary number is :
[3]
(i) 10 (for a 2 -bit DAC converter)
(ii) 0110 (for a 4-bit DAC)
(iii) 10111100 (for a 8-bit DAC).

Or

6. (a) Write a short note on Flash type Analog to Digital Converter.
(b) What are the different types of V to I converter. Explain any one.
(c) List various specifications of ADC.
7. (a) With the help of neat block diagram explain operation of PLL.
(b) What is the need of current boosting circuit ? Explain with the help of any one circuit.
(c) Draw block diagram of frequency multiplier. Draw input-output waveforms.

Or

8. (a) For PLL circuit shown in Fig. 1, calculate the following : [6]
(i) Free running frequency
(ii) Lock range
(iii) Capture range.

Fig. 1
(b) Write a short note on practical voltage regulator using LM317.
(c) Explain the following terms :
(i) Load Regulation
(ii) Line Regulation.

