Total No. of Questions-12]
[Total No. of Printed Pages-7
[4757]-149
S.E. (E \& TC) (Second Semester) EXAMINATION, 2015 DATA STRUCTURES
(2008 PATTERN)
Time : Three Hours
Maximum Marks : 100
N.B. :- (i) Answers to the two sections should be written in separate answer-books.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of non-programmable electronic pocket calculator is allowed.
(v) Assume suitable data, if necessary.

SECTION I

1. (a) List the different phases of creating a program. Explain any two.
(b) Write an algorithm to sort the following data using bubble sort and insertion sort. Give time complexity for the bubble sort and insertion sort.
(c) What will be the output of the following code ? Justify your answer :
for $(\mathrm{i}=\mathrm{o} ; \mathrm{i}<4 ; \mathrm{i}++$)
\{
for $(j=0 ; j<4 ; j++)$
\{
$\mathrm{a}[\mathrm{i}][\mathrm{j}]=20 *(\mathrm{i}+\mathrm{j})$;
$\operatorname{printf}(* \% \mathrm{~d} \backslash \mathrm{t} ", \mathrm{a}[\mathrm{i}][\mathrm{j}])$;
\}
printf("\n");
\}
printf('\%d\%d",i,j);
Or
2. (a) Write a function in ' C ' to implement selection sort.
(b) What will be the output of the following code ? Justify your answer :
void Fun(intx, int * p)
\{

$$
x=x+20
$$

$$
* p=* p+x
$$

\}
void main()
\{
int $a=20, b=30$;
Fun(a, \&b);
printf("\%d\%d",a,b);
\}
(c) Define Recursive Function in ' C ' and explain with example in detail.
3. (a) Explain parameter passing to functions for swapping of two variables :
(i) By value
(ii) By reference.
(b) Differentiate between static and dynamic memory allocation. List the functions used for dynamic memory allocation. [4]
(c) What is a string ? How do you declare a string variable in C ? Write and explain the function in C to find length of a string.

Or

4. (a) Write a function "Add_poly" in 'C' for addition of two polynomials.
(b) What are union ? Explain its advantages. Define a union having one integer, one float and an array of characters of size 2. [4]
(c) Write a short note on pointer to array and array of pointers.
5. (a) Define GLL with node declaration and represent the following polynomial using GLL :

$$
\begin{equation*}
20 X^{2} Y^{2} Z+10 X Y^{2} Z^{2}+8 X Y Z+7 X Y Z^{2} \tag{8}
\end{equation*}
$$

(b) Write a C function to delete node in a linked list.
(c) Explain node structure of a Doubly linked list and explain its advantages.

Or
6. (a) Write a C function for the following operations in DLL :
(i) Display the complete list
(ii) Search an element in the list.
(b) Write functions in C to create a node and display all nodes in SLL.
(c) Define Circular linked list and compare with SLL.

SECTION II

7. (a) Write a program for stack using array.
(b) Explain the examples in general and applications of queue in computer science.
(c) Convert the following expression to postfix from using stack. Show content of stack step by step.

$$
\mathrm{A}+(\mathrm{B} * \mathrm{C}) \wedge \mathrm{D}
$$

Or

8. (a) Give algorithm for evaluation of postfix expression.
(b) Write a program to create a queue using linked list. [6]
(c) What are types of expressions ? Explain with one example, how to convert infix expression to prefix and postfix form.
9. (a) Construct the binary search tree from the following elements :

$$
10,8,15,12,9,6,18
$$

Also show representation of this tree using array.
(b) What are advantages of threaded binary trees ?
(c) Describe the algorithm for non-recursive in order traversal in BST.

Or

10. (a) Construct the expression tree for :

$$
B-C \wedge D * E+20 .
$$

(b) Explain the cases related to delete an element from binary search tree.
11. (a) How to represent a graph ? Represent the graph consisting of minimum 6 nodes.
(b) Explain, how stack can be used for non-recursive depth first traversal related to graph traversal ?
(c) Describe Kruskal's algorithm to find minimum spanning tree from graph. Consider graph mentioned in Q. 12 (b).

Or

12. (a) Find the minimum cost spanning tree from the following graph using Prim's algorithm.

(b) Find shortest path from node A to all nodes in the following graph using Dijkstra's algorithm.

www.sppuonline.com
