Total No. of Questions—12]

[Total No. of Printed Pages—7

Seat No.

[4757]-149

S.E. (E & TC) (Second Semester) EXAMINATION, 2015 DATA STRUCTURES

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the two sections should be written in separate answer-books.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of non-programmable electronic pocket calculator is allowed.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) List the different phases of creating a program. Explain any two. [4]
 - (b) Write an algorithm to sort the following data using bubble sort and insertion sort. Give time complexity for the bubble sort and insertion sort. [6]

42 37 4 22 17

P.T.O.

```
(c)
           What will be the output of the following code? Justify your
                                                                          [6]
           answer:
           for(i=o;i<4;i++)
           {
                 for(j=0;j<4;j++)
                 {
                       a[i][j]=20*(i+j);
                       printf("%d\t",a[i][j]);
                 }
           printf("\n");
           printf('%d%d",i,j);
                                     Or
           Write a function in 'C' to implement selection sort.
2.
      (a)
                                                                          [4]
           What will be the output of the following code? Justify your
      (b)
                                                                          [6]
           answer:
           void Fun(intx, int * p)
           {
                 x=x + 20;
                 p = p + x
           void main()
           int a=20,b=30;
                 Fun(a, &b);
           printf("%d%d",a,b);
[4757]-149
                                     2
```

(c)	Define	Recursive	Function	in	'C'	and	explain	with	example	in
	detail.									[6]

- 3. (a) Explain parameter passing to functions for swapping of two variables: [8]
 - (i) By value
 - (ii) By reference.
 - (b) Differentiate between static and dynamic memory allocation.

 List the functions used for dynamic memory allocation. [4]
 - (c) What is a string? How do you declare a string variable in C? Write and explain the function in C to find length of a string.

Or

- 4. (a) Write a function "Add_poly" in 'C' for addition of two polynomials. [8]
 - (b) What are union? Explain its advantages. Define a union having one integer, one float and an array of characters of size 2. [4]
 - (c) Write a short note on pointer to array and array of pointers. [4]

[4757]-149 3 P.T.O.

[6]

5 .	(a)	Define GLL with node declaration and represent the follow	ring
		polynomial using GLL :	[8]
		$20X^2Y^2Z + 10XY^2Z^2 + 8XYZ + 7XYZ^2$.	
	(<i>b</i>)	Write a C function to delete node in a linked list.	[6]
	(c)	Explain node structure of a Doubly linked list and expl	lain
		its advantages.	[4]
		Or	
6.	(a)	Write a C function for the following operations in DLL:	[8]
		(i) Display the complete list	
		(ii) Search an element in the list.	
	(<i>b</i>)	Write functions in C to create a node and display all no	des
		in SLL.	[6]
	(c)	Define Circular linked list and compare with SLL.	[4]
		SECTION II	
7.	(a)	Write a program for stack using array.	[6]
	(b)	Explain the examples in general and applications of queue	e in

[4757]-149 4

computer science.

P.T.O.

	(c)	Convert the following expression to postfix from using stack.
		Show content of stack step by step. [6]
		A + (B * C) ^ D.
		Or
8.	(a)	Give algorithm for evaluation of postfix expression. [6]
	(b)	Write a program to create a queue using linked list. [6]
	(c)	What are types of expressions? Explain with one example,
		how to convert infix expression to prefix and postfix
		form. [6]
9.	(a)	Construct the binary search tree from the following elements:
		10, 8, 15, 12, 9, 6, 18.
		Also show representation of this tree using array. [6]
	(b)	What are advantages of threaded binary trees? [4]
	(c)	Describe the algorithm for non-recursive in order traversal
		in BST. [6]
		Or
10.	(a)	Construct the expression tree for: [8]
		B - C ^ D * E + 20.
	(b)	Explain the cases related to delete an element from binary
		search tree. [8]

5

[4757]-149

- 11. (a) How to represent a graph? Represent the graph consisting of minimum 6 nodes. [4]
 - (b) Explain, how stack can be used for non-recursive depth first traversal related to graph traversal? [6]
 - (c) Describe Kruskal's algorithm to find minimum spanning tree from graph. Consider graph mentioned in Q.12 (b). [6]

Or

12. (a) Find the minimum cost spanning tree from the following graph using Prim's algorithm. [8]

[4757]-149

(b) Find shortest path from node A to all nodes in the following graph using Dijkstra's algorithm. [8]

www.sppuonline.com