Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[4957]-1047

S.E. (E&TC/Electronics) (II Sem.) EXAMINATION, 2016 CONTROL SYSTEM

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Answer Q. **1** or Q. **2**, Q. **3** or Q. **4**, Q. **5** or Q. **6** and Q. **7** or Q. **8**.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
 - (vi) Use of logarithmic tables slide rule, mollier charts, electronic pocket calculator and steam table is allowed.
 - (v) Figures to the right indicate full marks.
- **1.** (a) Write short note on Stepper Motor.

[6]

- (b) A unity feedback system has, $G_{(s)} = \frac{K}{s(s+1)(1+0.45s)}$
 - (i) If r(t) = 4t and K = 2, find steady state error.
- (ii) If the desired value of steady state error to be 0.2, find corresponding value of K. [6]

P.T.O.

Or

2. (a) Reduce the following block diagram and obtain $\frac{C_{(s)}}{R_{(s)}}$. [6]

- (b) For the system with transfer function $\frac{1}{(s+3+7j)(s+3-7j)}$ find peak time and maximum peak overshoot. [6]
- **3.** (a) Find range of K so that the system will be stable using Routh-Hurwitz criterion for the characteristic Equation :

$$D(s) = s^4 + 5s^3 + 5s^2 + 4s + K = 0$$
 [4]

(b) Draw Bode Plot for unity feedback system given by $G(s) = \frac{40(s+5)}{s(s+2)(s+10)}$ and comment on stability. [8]

Or

- 4. (a) An unity feedback system has the open loop transfer function $G(s) = \frac{K}{s(s+1)(s+3)(s+4)}$ Sketch complete root locus and comment on stability. [8]
 - (b) Figure below shows schematic diagram of unity feedback control system, calculate ω_r and M_r .

[4957]-1047

[7]

5. (a) Find state model of following Electrical network. [6]

(b) Consider a system having state model

$$\begin{bmatrix} \mathbf{\dot{X}}_1 \\ \mathbf{\dot{X}}_2 \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix} \cup \text{ and } \mathbf{Y} = \begin{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \end{bmatrix} \text{ with } \mathbf{D} = \mathbf{0}.$$

Or

6. (a) Find controllability and observability of the system described by state equation: [6]

- (b) Write short note on state transition matrix and its properties. [7]
- 7. (a) Explain digital control system with its advantages. [6] [4957]-1047 3 P.T.O.

[6]

(b) Draw a PLC ladder diagram for the bottle filling system as shown in figure below. [7]

www.sppuonline.com

- **8.** (a) Write short note on PID controllers.
 - (b) Obtain the pulse transfer function of the system shown in figure. [7]

