\square
[Total No. of Pages : 3]

S.E. 2008 (Electronics and Telecommunication)
 Communication Theory
 (Semester-II)

Time: 3 Hours
Max. Marks : 100
Instructions to the candidates:

1) Answers to the two sections should be written in separate answer books.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of Calculator is allowed.
5) Assume Suitable data if necessary

SECTION I

Q1 A An AM transmitter radiates 1000 kHz , carrier with 50 kW of power. Carrier is modulated with $300 \mathrm{~Hz}, 800 \mathrm{~Hz}$ and 2 kHz signals. What will be the radiated power if each signal modulates at 80% modulation? Draw the spectrum of modulated signal. Calculate total modulation index and power content of each spectral component

B What is carrier communication? Explain the types of the same.

OR

Q2 A Derive following
a. Equation of AM
b. Equation of total power transmitted in AM (DSBFC)

B Explain nonlinear generation of DSBSC with suitable mathematical equation and block diagram also draw the waveforms and spectrum of the DSBSC signal for non sinusoidal signal

Q3 A Explain Indirect method of FM generation
B A baseband signal $m(t)$ is periodic Triangular waveform of period 10^{-3} and amplitude of 1 V peak.
i) Sketch FM and PM waveform if $W \mathrm{c}$ is equal to $2 \pi * 10^{5}, \mathrm{Kf}=2000 \pi$ and $K p=10 \pi$.
ii) Estimate bandwidth for FM and PM.

A Explain Simple and practical diode detector in detail
B Explain superhetrodyne receiver for FM

OR

Q6 A Explain distortions present in simple diode detector.
B What is AGC and explain the types of AGC
$C \quad$ In an $A M$ radio receiver the loaded Q of the antenna circuit at the input to the mixer is 100 .If the intermediate frequency is 455 kHz , calculate the image frequency and its rejection at 1 MHz .

SECTION II

Q7 A Consider a receiving system consisting of an RF amplifier with a noise figure of $\mathbf{F 1}=\mathbf{8} \mathrm{dB}$ and a gain of $\mathbf{2 0} \mathrm{dB}$ followed by a mixer with a noise figure of
 noise figure of $\mathrm{F} 3=7 \mathrm{~dB}$ and a gain of 40 dB . Find overall noise figure and noise temperature.

B Derive Friis formula for noise factor of an amplifier in cascade and calculate the equivalent Noise temperature of the same

OR
Q8 A Explain Internal sources of Noise
that the thermal noise voltage generated by $R 1=0.3 \mu \mathrm{~V}$. Calculate the Thermal voltage generated by 1) Series combination 2) parallel combination

Q9 A Describe performance of DSBFC-AM in presence of Noise for synchronous detection.

B Describe performance of FM in presence of Noise

OR

Q10 A Explain Pre-emphasis and De emphasis in detail
B Describe performance of DSBSC-AM in presence of Noise

Q11 A Explain PCM encoder and Decoder
B Explain types of Sampling with waveforms
C Compare DM and ADM

OR

Q12 A State and Prove Sampling theorem with suitable waveforms and mathematical equations. WWW.sppuonline.com

B Draw and explain Distortions in DM
C Explain block diagram of PCM encoder

