[Total No. of Pages: 3]

S.E. 2008 (Electronics and Telecommunication)

Communication Theory

(Semester - II)

Time: 3 Hours Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.
- 5) Assume Suitable data if necessary

SECTION I

- Q1 A An AM transmitter radiates 1000 kHz, carrier with 50 kW of power. [8] Carrier is modulated with 300 Hz, 800Hz and 2 kHz signals. What will be the radiated power if each signal modulates at 80 % modulation? Draw the spectrum of modulated signal. Calculate total modulation index and power content of each spectral component
 - B What is carrier communication? Explain the types of the same.

[8]

OR

Q2 A Derive following

[8]

- a. Equation of AM
- **b.** Equation of total power transmitted in AM (DSBFC)
- B Explain nonlinear generation of DSBSC with suitable mathematical equation and block diagram also draw the waveforms and spectrum of the DSBSC signal for non sinusoidal signal

[8]

Q3 A Explain Indirect method of FM generation

[8]

B A baseband signal m (t) is periodic Triangular waveform of period 10⁻³ and amplitude of 1V peak.

[8]

- i) Sketch FM and PM waveform if Wc is equal to $2\pi * 10^5$, Kf = 2000π and Kp = 10π .
- ii) Estimate bandwidth for FM and PM.

Q4	A	Compare following	www.sppuonline.com [8]
		1.NBFM and WBFM	
		2.FM and AM	
	В	An angle modulated signal with carrier frequency $Wc = 2\pi * 10^6$ is described by the equation	[8]
		$E_{FM}(t)=10 \cos (Wct + 0.2 \sin 1000 \pi t)$	
		Find following	
		 Power of modulated signal Modulation index Frequency deviation Bandwidth of FM 	
Q5	A	Explain Simple and practical diode detector in detail	[10]
	В	Explain superhetrodyne receiver for FM	[8]
		OR	
Q6	A	Explain distortions present in simple diode detector.	[8]
	В	What is AGC and explain the types of AGC	[6]
	C	In an AM radio receiver the loaded Q of the antenna circuit at the input the mixer is 100. If the intermediate frequency is 455 kHz, calculate the image frequency and its rejection at 1 MHz.	to [4]
		SECTION II	
Q7	A	Consider a receiving system consisting of an RF amplifier with a noise fig of F1 =8 dB and a gain of 20 dB followed by a mixer with a noise figure of F2= 10 dB and a conversion gain of 12 dB and finally IF amplifier with a noise figure of F3 = 7 dB and a gain of 40 dB. Find overall noise figure ar noise temperature.	f
	В	Derive Friis formula for noise factor of an amplifier in cascade and calcuthe equivalent Noise temperature of the same	llate [8]
		OR	
Q8	A	Explain Internal sources of Noise	[8]

B. Three resistors have values R1= 10K Ω ,R1= 14K Ω , R1= 24K Ω .It is known www.sppuonline.com

[8]

that the thermal noise voltage generated by $R1=0.3\mu V$.Calculate the Thermal voltage generated by 1) Series combination 2) parallel combination

Q9	A	Describe performance of DSBFC-AM in presence of Noise for synchronous detection.	[8]
	В	Describe performance of FM in presence of Noise	[8]
		OR	
Q10	A	Explain Pre-emphasis and De emphasis in detail	[8]
	В	Describe performance of DSBSC-AM in presence of Noise	[8]
Q11	A	Explain PCM encoder and Decoder	[8]
	В	Explain types of Sampling with waveforms	[6]
	C	Compare DM and ADM	[4]
		OR	
Q12	A	State and Prove Sampling theorem with suitable waveforms and mathematical equations. WWW.sppuonline.com	[8]
	В	Draw and explain Distortions in DM	[6]
	C	Explain block diagram of PCM encoder	[4]