May-Jun -2011

Total No. of Questions—12

[Total No. of Printed Pages-8

[3962]-152

S.E. (E&TC/Elex.) (First Semester) EXAMINATION, 2011 SOLID STATE DEVICES AND CIRCUITS (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the two Sections should be written in separate answer-books.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) Explain construction, operation and characteristics of photo-diode. [6]
 - (b) Explain the following Non-ideal characteristics of MOSFET:
 - (i) Finite output resistance
 - (ii) Body effect
 - (iii) Subthreshold conduction
 - (iv) Breakdown effect.

[8]

- (c) An ideal Ge-diode at a temperature of 120°C has a reverse saturation current of 30 μA at a temperature of 120°C. Find the dynamic resistance for a 0.2 V bias in :
 - (i) The forward bias direction
 - (ii) Reverse bias direction.

[4]

- 2. (a) Why are MOSFETs used as VLSI device? [4]
 - (b) While handling CMOS devices, what precautions should be taken? [6]
 - (c) Analyze the circuit shown in Fig. 1. Assume circuit and diode parameters of $V_{ps}=5$ V, R=5 k Ω , $V_r=0.6$ V and $V_i=0.5$ sin ω/t volts. [8]

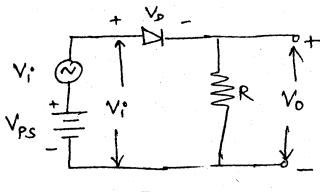


Fig. 1

- 3. (a) Explain with neat diagram BiCMOS inverter. [8]
 - (b) For the circuit shown in Fig. 2, calculate I_D , V_{DS} , V_{Cr} , V_S . For the MOSFET, I_{DSS} = 20 mA, $V_{GS(OFF)}$ = -6 V. [8]

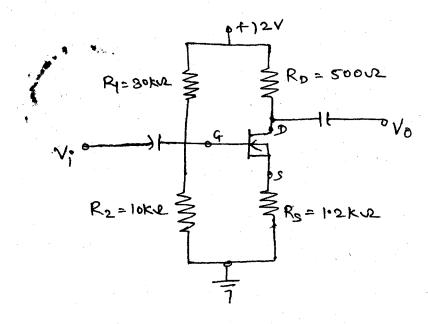


Fig. 2

[3962]-152

- 4. (a) Explain MOSFET scaling and small geometry effects. [8]
 - (b) For the circuit shown in Fig. 3, calculate V_G , I_D , V_{GS} , V_{DS} . For MOSFET $V_{GS}(Th) = 5$ V, $I_D(ON) = 3$ mA, $V_{GS}(ON) = 10$ V. [8]

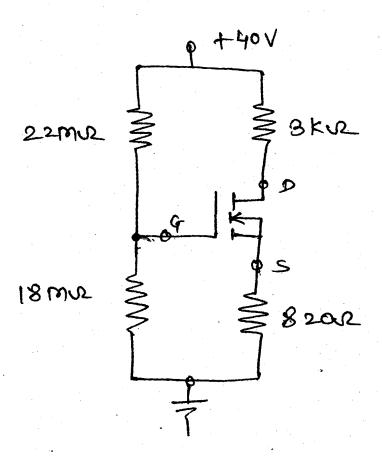


Fig. 3

5. (a) Why is bias stabilization in BJT amplifier needed? Define three bias stabilization factors and explain its significance.

[8]

[3962]-152

3

(b) Derive an expression for current gain, voltage gain, input impedance and output impedance of CE amplifier for small signal h-model. [8]

Or

6. (a) For the amplifier circuit shown in Fig. 4, calculate:

$$A_{vs} = \frac{V_o}{V_s}, A_{IS} = \frac{I_o}{I_s}, R_1, R_o$$

For the BJT $h_{ie} = 1.1 \text{ k}\Omega$, $h_{fe} = 50$,

$$h_{re} = 2.4 \times 10^{-4}, h_{oe} = 25 \mu \text{A/V}.$$
 [8]

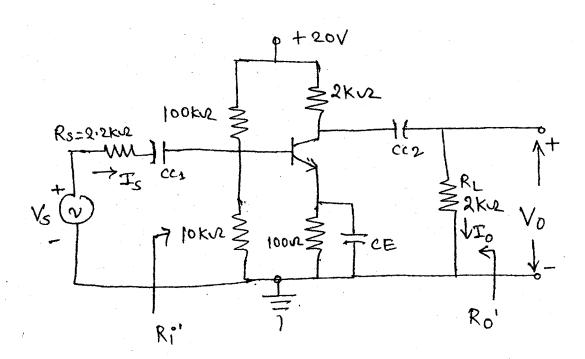


Fig. 4

(b) Explain the need of multistaging of amplifiers. What is the selection criterion for transistor configuration in multistage amplifiers. [8]

[3962]-152

SECTION II

- 7. (a) What are the advantages of square wave testing over frequency response method? Explain in brief. [4]
 - (b) Explain the concept of 'Dominant Pole' in BJT amplifier with sketch. [4]
 - (c) A high frequency amplifier uses a transistor which is driven from a source with $R_{\rm S}=1~\Omega$, calculate value of $f_{\rm H}$, $A_{\rm VS}$ low and $A_{\rm VS}$ high if $R_{\rm L}=0$ and $R_{\rm L}=1~{\rm k}\Omega$.

Assume hybrid $-\pi$ parameters : rb'e = 1 k Ω , rb'b = 100 Ω , $C_e = 100$ pF, $C_c = 3$ pF, 9 m = 50 mA/V. [8]

Or

- 8. (a) Derive the expression for CE short circuit current gain A_i as a function of frequency. [8]
 - (b) An RC-coupled amplifier has $A_V \text{mid} = 80$, $R_{in} = 10 \text{ k}\Omega$, it is fed from ideal voltage source through $C_C = 0.1 \text{ }\mu\text{F}$. Calculate lower 3 dB frequency gain at 300 Hz and frequency at which gain is down by 10 dB from its mid frequency value. [8]
- 9. (a) Explain the typical methodology used for feedback amplifier analysis.

[3962]-152

(b) A Colpitts oscillator shown in Fig. 5. What is the approximate frequency? What will be the frequency, if the value of L is doubled? What should be the value of inductance to double the frequency value?

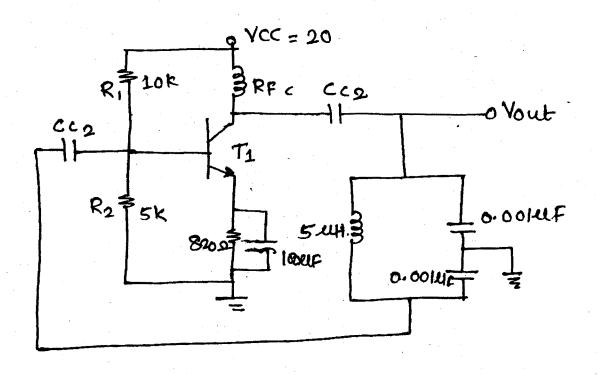


Fig. 5

(c) Write a short note on crystal oscillator.

[4]

Or

- 10. (a) Define the stability of system. Explain it in terms of Boded plot. [6]
 - (b) For the feedback amplifier shown in Fig. 6,

$$R_s = 0$$
, $h_{fe} = 50$, $h_{ie} = 1.1 \text{ k}\Omega$, $h_{re} = h_{oe} = 0$.

[3962]-152

and transistors are identical. Calculate Avf, Rof, Rif. [10]

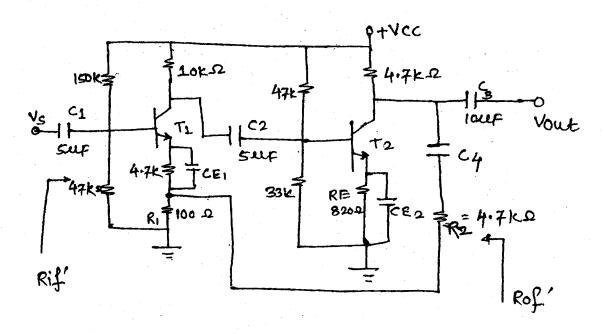


Fig. 6

- (c) What are the advantages of negative feedback? [2]
- 11. (a) Discuss the safe operating area of transistor. [4]
 - (b) A complementary symmetry class AB. Audio frequency power amplifier uses two matched BJTs and dual power supply of \pm 30 V, and feeds a common load of 8 Ω . If the i/p voltage to the amplifier is 8 V (rms), calculate :
 - (i) DC power input
 - (ii) AC power output
 - (iii) Max. Possible AC power O/P
 - (iv) Efficiency
 - (v) Power dissipation by both transistors. [8]
 - (c) Write a short note on thermal resistance. [4]

[3962]-152

7

- 12. (a) With the help of neat circuit diagram explain the operation of complementary symmetry (class AB) power amplifier. Explain the significance of class AB. [8]
 - (b) A sinusoidal signal $V_S = 1.95 \sin 400t$ is applied to a power amplifier. The resulting current is $I_O = 12 \sin 400t + 1.2 \sin 800 t + 0.9 \sin 1200t + 0.4 \sin 1600 t$.

Calculate:

- (i) Total Harmonic Distortion
- (ii) Percentage increase in power because of distortion. [8]

www.sppuonline.com