Total No. of Questions-8]

Seat No.	

[Total No. of Printed Pages-4

[4757]-152

S.E. (Electronics/E\&TC) (II Sem.) EXAMINATION, 2015 SIGNALS AND SYSTEM
(2008 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Figures to the right indicate full marks.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Assume suitable data, if necessary.
(v) Use of calculator is allowed.

1. (a) Find even and odd components of the following signals : [4]
(i) $x(t)=1+t+3 t^{2}+5 t^{3}+9 t^{4}$
(ii) $\quad x(t)=\cos (t)+\sin (t)+\sin (t) \cos (t)$.
(b) For each of the following signals, determine whether it is periodic, and if it is, find the fundamental period :
(i) $x(t)=8 \sin (400 \pi t)$
(ii) $x(t)=5+t^{2}$.
(c) Find $y(n)$, discrete time signal convolution integral. If, [4] $x(n)=[u(n)-u(n-4)]$ and $h(n)=\{2,2,2,2\}$.

Or
2. (a) For the following system, determine whether it is :
[3]
(i) Memoryless
(ii) Stable
(iii) Causal

$$
y(t)=x(3-t)
$$

(b) Compute the convolution integral by graphical method and sketch the output for the following signal :

$$
\begin{equation*}
x(t)=u(t)-u(t-2), h(t)=e^{-2 t} u(t) . \tag{6}
\end{equation*}
$$

(c) Sketch the waveform of the following signal,

$$
y(t)=r(t+1)-r(t)+r(t-2)
$$

3. (a) Find the Fourier transform of the following signals,
(i) $\quad x(t)=2[u(t)-u(t-4)]$
(ii) $x(t)=u(t)$.
(b) State and prove the following properties of the Laplace transform :
[6]
(i) Time shifting
(ii) Initial value theorem
(iii) Final value theorem.

> Or
4. (a) Show that rectangular function in time domain to become Sinc function in frequency domain.
(b) Find the Laplace transform of the following signals using properties of Laplace transform :
[6]
(i) $x(t)=u(t-3)$
(ii) $x(t)=t^{2} e-3 t u(t)$.
5. (a) Prove that for an energy signal $x(t)$ the Autocorrelation function and energy spectral density form Fourier Transform pair. [7]
(b) State and explain all the properties of energy spectral density [ESD].
[6]

Or

6. (a) State and explain all the properties of probability, CDF and PDF.
(b) Determine the cross correlation between two sequences given below :
[5]

$$
\begin{aligned}
& x_{1}[n]=\left\{\begin{array}{llll}
1, & 2, & 3, & 4
\end{array}\right\} \\
& x_{2}[n]=\left\{\begin{array}{lll}
3, & 2, & 1,
\end{array}\right\} .
\end{aligned}
$$

7. (a) Probability density function of a Random variable x is defined by :

$$
f x(x)= \begin{cases}\mathrm{K}\left(1-x^{2}\right), & 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find :
(i) k
(ii) CDF
(iii) $\mathrm{P}(0 \leq x \leq 2)$.
(b) Explain Gaussian probability model with respect to its density and distribution function.
[6]

Or

8. (a) CDF of a certain Random variable is given by :

$$
\mathrm{F} x(x)= \begin{cases}0 & x \leq 0 \tag{7}\\ \mathrm{~K} x^{2} & 0<x \leq 10 \\ 100 \mathrm{~K} & x>10\end{cases}
$$

(i) Find the value of K.
(ii) Determine PDF.
(iii) Find the values of Probabilities $\mathrm{P}(x \leq 5)$; $\mathrm{P}(x>11)$.
(b) A student arrives late for a class 30% of the times. Class meets 5 times a week. Then find :
 in a given week.
(ii) Probability of student being late for two classes in a given week.
(iii) Probability of student will not be late at all during a given week.

