Total No. of Questions—12]

[Total No. of Printed Pages—6

Seat	
No.	

[5057]-65

S.E. (E&TC Engineering) (First Semester) EXAMINATION, 2016 POWER DEVICES AND MACHINES (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the two sections should be written in separate answer-books.
 - (ii) Neat diagrams and waveforms must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of non-programmable calculator is allowed.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) Compare power MOSFET with IGBT ? [5]
 - (b) Explain construction and steady state characteristics of power BJT. [7]
 - (c) The reverse recovery time of a power diode is 5 μs and rate of fall of diode current is 80 A/μs. If softness factor is 0.5, determine:
 - (i) t_a & t_b
 - (ii) Peak inverse current (I_{RR})
 - (iii) Storage charge (Q_{RR})

P.T.O.

1	`	
(,	r

2.	<i>(a)</i>	Compare power MOSFET with power BJT.	5]
	(<i>b</i>)	What is latch up in IGBT? Explain causes and remedies for	or
		latch up.	7]
	(c)	Draw and explain Gate Drive Circuit for IGBTT.	6]
3.	(a)	Draw two transistor analogy of SCR ? Derive an expression	n
		for its anode current I_A ?	6]
	(<i>b</i>)	The gate triggering circuit of a SCR has a source voltage	gе
		of 15 V and the gate cathode characteristics has a straigh	ıt
		line slope of 130. If gate power dissipation is 0.5 V	٧,
		calculate:	6]
		(i) Triggering voltage	
		(ii) Triggering current	
		(iii) Gate series resistance.	
	(c)	Compare SCR with GTO ?	4]
		Or	
4.	(a)	Compare SCR with TRIAC ?	5]
	(<i>b</i>)	Explain construction and steady state characteristics	of
		SCR.	6]
	(c)	Draw and explain synchronized UJT triggering circuit for SC	R
		with waveforms.	5]
[505	67]-65	2	

- 5. (a) Explain single phase fully controlled rectifier for R-L load with various modes of operations and waveforms. Also derive expressions for average output voltage and rms output voltage. [10]
 - (b) A single phase semi-converter is operated from 120 V, 50 Hz AC supply. The load resistance is 10 Ω . If the average output voltage is 25% of the maximum possible average output voltage, determine : [6]
 - (i) Firing angle
 - (ii) Average output current
 - (iii) rms output current.

Or

- 6. (a) A single phase full wave ac voltage controller has a resistive load of R = 10 Ω and the input voltage is V_s = 230 V (rms), 50 Hz. The delay angles of thyristors T1 and T2 are equal: $\alpha 1 = \alpha 2 = \pi/3$. Determine:
 - (i) the rms output voltage and current
 - (ii) the input PF
 - (iii) rms current of each SCR.
 - (b) Draw and explain single phase full wave AC voltage controller for R load and derive an expression for its output voltage.

 Also draw the following waveforms: [10]
 - (i) gate pulses

[5057]-65 3 P.T.O.

- (ii) output voltage
- (iii) output current
- (iv) voltage across SCR1
- (v) voltage across SCR2.

SECTION II

- 7. (a) What is a DC chopper? Explain different control techniques in DC chopper. [7]
 - (b) A step down DC chopper has a resistive load of $R=15~\Omega$ and input voltage $V_s=200~V$. When the chopper remains ON, its voltage drop is 2.5 V. The chopper frequency is 1 kHz. If the duty cycle is 50%, determine : [6]
 - (i) Average and rms output voltages
 - (ii) Chopper efficiency.
 - (c) Explain with block schematic working of Off-line UPS. [5] Or
- 8. (a) Single phase full bridge inverter has a resistive load of $R = 3 \Omega$, dc input voltage is 50 V. Calculate: [4]
 - (i) rms o/p voltage at the fundamental frequency E1
 - (ii) Output power P0.

[5057]-65 4

- (b) Explain $_{1-\Phi}$ bridge inverter for R-L load with circuit and waveforms. Derive expression o/p rms voltage. [8]
- (c) Explain step up chopper with circuit? Show that: [6]

$$V_0 = \frac{V_S}{(1-D)}.$$

- **9.** (a) Explain construction, torque-speed and torque-current characteristics for dc shunt motor. [10]
 - (b) A 4-pole, lap wound DC motor has 500 conductors. Its speed is 1000 rpm. The flux per pole is 20 mWb. It is connected to 200 V dc supply, armsture resistance is 0.8 Ω . Find : [6]
 - (i) Back e.m.f.
 - (ii) Armature current
 - (iii) Torque developed.

Or

- **10.** (a) Explain torque-speed characteristics of 3-phase induction motor. [8]
 - (b) Explain construction, working and characteristics of ac servomotor. [8]
- 11. (a) Draw and explain various types of 3-phase transformer connection along with relation between phase and line voltages and currents.[8]

[5057]-65 P.T.O.

(b) State various protection methods for motors? Explain field failure protection method for dc motor in detail. [8]

Or

- **12.** (a) Explain construction, working and characteristics of BLDC motor. [8]
 - (b) What are types of stepper motor? Explain any *one* type with construction and working in detail. [8]

www.sppuonline.com