Total No. of Questions-12]
Seat
No.
[Total No. of Printed Pages-8+1
[4457]-63

S.E. (E \& TC/Elec.) EXAMINATION, 2013
 NETWORK ANALYSIS

(2008 PATTERN)
Time : Three Hours
Maximum Marks : 100
N.B. :- (i) Answer three questions from Section I and three questions from Section II.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Figures to the right indicate full marks.
(v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
(vi) Assume suitable data, if necessary.

SECTION I

1. (a) State and explain Thevenin's theorem.
(b) Find current through 5 ohm resistor by superposition theorem in Fig. 1 :

Fig. 1
(c) Using source shifting and source transformation, find current ' 1 ' in the circuit shown in Fig. 2:

Fig. 2

Or
2. (a) State and explain maximum power transfer theorem for DC circuit.
(b) Using Kirchhoff's law, determine current i_{1} in the circuit shown in Fig. 3 :

Fig. 3
(c) Find the Thevenin's and Norton's equivalent circuit across terminals AB in Fig. 4 :

Fig. 4
3. (a) State the properties of series RLC circuit (any four). [4]
(b) A series RLC circuit consists of $\mathrm{R}=100 \Omega, \mathrm{~L}=100 \mathrm{mH}$, $\mathrm{C}=10 \mathrm{nF}$. Applied voltage is 100 V . Find :
[6]
(i) Frequency at resonance
(ii) Q factor
(iii) Bandwidth.
(c) Justify, parallel resonant circuit is a current magnifier. [6]

Or

4. (a) Derive expression for resonant frequency for parallel resonant circuit.
(b) A parallel resonant circuit has a coil of 100 mH with $\mathrm{Q}=50$. The coil is resonant at 900 kHz . Find the value of capacitor, resistance in coil and circuit impedance at resonance for Fig. 5 :

Fig. 5
(c) A series RLC circuit consists of $\mathrm{R}=100 \Omega$ and $\mathrm{L}=20 \mathrm{mH}$. At what frequency the circuit would resonate to achieve a Q factor of 10 . What value of capacitor should be selected for the above setup ?
5. (a) Derive the relation between neper and decibel.
(b) Design constant k-type low pass filter with cut-off frequency 10 kHz and design impedance of 600Ω. For the above design draw T and π sections.
(c) State properties of symmetrical and asymmetrical networks and derive expression for characteristic impedance of symmetrical T-network.

Or

6. (a) What is constant k-type filter ? Derive expression for cut-off frequency of constant k low pass filter.
(b) Design symmetrical T and π attenuators having characteristic resistance 600Ω and attenuation 20 dB .
(c) A four terminal network consists of a cascade connection of identical four symmetrical T sections with characteristic resistance of 300Ω. The network is loaded into 300Ω resistance and is driven by a generator of 10 V . Determine load current if series and shunt arm resistance of T-section are 100Ω and 875Ω respectively.

SECTION II

7. (a) State initial and final value theorems for Laplace transform.
(b) Steady state is reached when switch is open. Switch is closed at $t=0$. Find current in inductor at $t>0$ using Laplace transform (Refer Fig. 6) :

Fig. 6
(c) Steady state is reached when the switch is at position ' a ' at $t=0$. Switch is shifted to position ' b '. Find current in capacitor at $t>0$ using Laplace transform (Refer Fig. 7) :

Fig. 7

Or
8. (a) State any four properties of Laplace transform.
[4]
(b) In series R - C circuit initial charge on capacitor is $2 \times 10^{-3} \mathrm{C}$. Find $i(t) t>0$ using Laplace transform (Refer Fig. 8) :

Fig. 8
(c) Steady state is reached when the switch is at position ' a '. At $t=0$ switch is shifted to position ' b '. Find the current in inductor at $t>0$ using Laplace transform (Refer Fig. 9) :

Fig. 9
9. (a) Derive the conditions for symmetry for Z and Y parameters.
(b) For the network shown in Fig. 10, find driving point function and hence plot poles and zeros on s plane :

Fig. 10

Or
10. (a) Explain network functions for one port and two port networks.
[8]
(b) Find ABCD parameters for the network shown in Fig. 11 :

Fig. 11
11. (a) State primary and secondary constants for transmission line and derive the relation of Z_{0} and γ in terms of primary constants.
(b) A transmission line has the following constants :

$$
\begin{aligned}
& \mathrm{R}=10.4 \Omega \\
& \mathrm{~L}=3.666 \mathrm{mH} \\
& \mathrm{C}=0.00835 \mathrm{mF} \\
& \mathrm{Q}=0.08 \mu \mho
\end{aligned}
$$

Find $\mathrm{Z}_{0}, \alpha, \beta$ and v at $\omega=5000 \mathrm{rad} / \mathrm{sec}$.

Or
12. (a) Explain standing wave voltage ratio related to transmission line and hence derive the expression for standing wave ratio in terms of reflection coefficients.
(b) A transmission line has a characteristic impedance of 400
Ω. Determine the standing wave voltage ratio with the following receiving end impedances :
(i) $\mathrm{Z}_{\mathrm{R}}=70+j 0$
(ii) $\mathrm{Z}_{\mathrm{R}}=800+j 0$
(iii) $\mathrm{Z}_{\mathrm{R}}=650-j 475$.

