SEAT NO.:

[Total No. of Pages: 3]

B.E. 2008 (Digital Signal Processing) [403149]

(Elective - III) (Semester - II) Time: 3 Hours Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Calculator is allowed.
- 6) Assume Suitable data if necessary

SECTION I

- Q1) a) State sampling theorem and explain aliasing effect. [6]
 - b) A discrete time signal is given by [6]

$$x(n) = \{1, 1, 1, 1, 2\}$$

 $x(n) = \{1,1,1,1,2\}$ Sketch the following signals i) x(n-2) ii) x(3-n) iii) $x(n-1)\delta(n-1)$

c) Find linear convolution using multiplication method [6]

$$x(n) = 1$$
 for n=-3 & $h(n) = 1$ for n=2 & 3
= 2 for n=-2 = 0 elsewhere

0 elsewhere

OR

- State advantages of digital signals over analog signals Q2) [6] a)
 - Determine whether following systems are static/dynamic, linear/nonlinear, b) [6] causal/noncausal, and stable/unstable.

i)
$$y(n) = x(n) + nx(n+1)$$
 ii) $y(n) = e^{-x(n)}$ iii) $y(n) = cos(x(n))$

- Explain A/D conversion with quantization and encoding. [6] c)
- Q3) a) State and prove any four properties of z transform. [8]
 - Find z transform and ROC of **b**) [8]

$$x(n) = \left[\frac{1}{2}^{n} + \frac{3}{4}^{n}\right] u(n-1)$$

- State and prove any four properties of Discrete time fourier transform. O4) [8] a)
 - Find inverse z transform using partial fraction method **b**) [8]

$$X(z) = \frac{z+4}{z^2-4z+3}$$

- Q5) a) Explain different Ideal selective filters and derive their impulse response. [8]
 - b) Explain generalized linear phase system and four types of GLPS [8]

OR

- Q6) a) Explain causality and stability with respect to z transform. [8]
 - b) Plot the frequency response (magnitude and phase response) of y(n) 0.5 y(n-1) = x(n) [8]

SECTION II

- Q7) a) State the Circular Shift property of Discrete Fourier Transform (DFT) [4]
 - b) Obtain DFT of the following sequence: [6] $x(n) = \{0.5, 0.5, 0.5, 0.5\}$ using Decimation-in-Time (DIT) Radix-2 FFT algorithm.
 - c) Determine the circular convolution of the following sequences using 4-point DFT [6] and IDFT

$$x_I(n) = \{1, 2, 3, 1\}$$

$$x_2(n) = \{4,3,2,2\}$$

OR

- Q8) a) Compare DFT with DTFT [4]
 - b) Compute the IDFT of the following using Decimation-in- Frequency (DIF) [6] Radix-2 FFT algorithm.

$$X(k) = \{ 8, -2-j2,4,-2+j2 \}$$

c) Find Linear convolution using circular convolution of the following Sequences: [6]

$$x(n) = \{ 1,2,1 \} ; h(n) = \{ 1,2 \}$$

- Q9) a) State the specifications required in any filter design. [4]
 - b) Differentiate between Bilinear Transformation method & Impulse invariance [6] method.
 - c) Design a low pass digital IIR filter of Butterworth type using bilinear [8] transformation method (BLT) for the specifications given below:
 - i)Amount of gain required in pass band=0.8
 - ii) Pass band frequency=0.2π
 - iii) Amount of attenuation required= 0.2
 - iv)Stop band frequency=0.6 π . Assume Sampling time ,T= 1.

[8]

[8]

[8]

- Q10) a) Differentiate between FIR filters and IIR filters.
 - b) State & define various kinds of window functions used for FIR filter design. [6]
 - c) Design a symmetric low pass digital FIR filter for the following specifications [8] using Fourier series method:-

Cut-off frequency = 500 Hz

Sampling frequency = 2000 Hz

Order of filter = 10

Filter length required= 11; Use Hamming Window.

Take
$$h(n) = \frac{\sin(n\pi/2)}{2(n\pi/2)}$$

Q11) a) Realize the system described by –

$$y(n) - 0.8 y(n-1) + 0.12 y(n-2) = 5x(n) + 2x(n-1)$$

in Direct form-II & cascade form for IIR filters.

- b) Write short notes on (Any two)

 www.sppuonline.com
 - i) Spectrum Analysis ii) DSP based vibration analysis system
 - iii) Finite Register Length effect.

OR

Q12) a) Determine FIR linear phase and cascade realization of the system function [8] expressed as

$$H(z) = \left(1 + \frac{1}{2}z^{-1} + z^{-2}\right)\left(1 + \frac{1}{4}z^{-1} + z^{-2}\right)$$

- b) Write short notes on (Any two)
 - i) Power factor correction using DSP ii) Applications of DSP in

Machine control iii) Basic structures for IIR Filters.