Total No. of Questions : 12]

P1721

[4859]-69

SEAT No. :

[Total No. of Pages : 4]

B.E. Electrical CONTROL SYSTEMS-II

(2008 Course) (Semester-I) (403145)

Time: 3 Hours [Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q10, Q.11 or Q.12.
- 3) Figures to the right indicate full marks.
- 4) Use of calculator is allowed.
- 5) Assume suitable data if necessary.

SECTION-I

- Q1) a) Draw electrical network & derive Transfer Function of Lag-lead compensation network & show its pole zero configuration.[8]
 - b) Design Lead compensation for the system having OLTF

G(s)H(s) =
$$\frac{25}{s(0.5s+1)(0.016s+1)}$$
 & PM around 42° [10]

OR

- **Q2)** a) Explain steps to be taken to design lead network by Bode plot approach. [8]
 - b) Design a suitable lag compensator for the following unity feedback system:

G(s)=K/S(1+2S); such that Phase margin is 40° and steady state error for ramp input is 0.2. [10]

P.T.O.

- Q3) a) Define and explain the terms: Eigen values, Eigen vectors, Diagonalisation and Vander Monde Matrix.[8]
 - b) The state equation of the system is given by: [8]

$$X^{\circ}(t) = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t).$$

Determine the following:

i) STM & ii) State equation for unit step input under zero initial condition.

OR

- Q4) a) Obtain the solution for homogeneous state equation & State properties of STM.
 - b) For the given system obtain eigen values, eigen vectors, modal matrix & diagonal matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & -1 \\ -6 & -11 & 6 \\ -6 & -11 & 5 \end{bmatrix}$$
 [8]

- **Q5)** a) Define controllability & Observability. Explain any one method to determine it. [8]
 - b) Determine the state controllability and observability of the following system:

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -3 & 2 \\ 0 & 0 & -8 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}.$$
 [8]

OR

[4859]-69

- **Q6)** a) What is the need of state observer? Explain design of full order state observer. [8]
 - b) For a given system

$$A = \begin{bmatrix} 0 & 15 \\ 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 0 & 2 \end{bmatrix}$$

Determine observer gain matrix Ke such that S_1 , $S_2 = -2 \pm j3$ are Eigen values of observer gain matrix. [8]

SECTION-II

- Q7) a) Explain PID controller with its characteristics, applications & its effect on system performance.[8]
 - b) For a unity feedback system $G(s) = \frac{6.63 \text{K}}{s(s+1.71)(s+100)}$, design a PID controller to meet following specifications. Mp=25%, ts=2 sec and kv=20.

OR

- **Q8)** a) Explain Zigler-Nichol method for tuning of PID controller. [8]
 - b) Wrtie short note on design specifications in time domain and frequency domain. [8]
- **Q9)** a) Name the various peculiar features exhibited by the non-linear systems which are not found with linear systems and explain any two such features. [8]
 - b) Derive the Describing function for Saturation non-linearity. [8]

OR

[4859]-69

- Q10)a) Compare the advantages and disadvantages of the Describing function method and the phase plane method for the analysis of non-linear control system.
 - b) A system with

$$G(s) = \frac{50}{s(s+1)(s+2)}$$
 includes ideal relay with output equal to ∓ 1

unit. Determine the amplitude and frequency of limit cycle by Describing function method. [8]

- Q11)a) Describe briefly the two methods of determining time from phase plane trajectory.[8]
 - b) Determine the kind of Singularity, find the characteristic equation and draw phase portrait for the following differential equation. [10]

$$x \cdot \cdot + 3x \cdot + 3x = 0$$
www.sppuonline.com
OR

- **Q12)**a) Explain Liapunav's second method and Liapunav's stability theorem. [6]
 - b) Explain whether following quadratic form of system is positive definite or not using Sylverster's criterion.

$$V(x) = 8X_1^2 + X_2^2 + 4X_3^2 + 2X_1X_2 - 4X_1X_3 - 2X_2X_3.$$
 [6]

c) Explain terminologies used for Scalar function: [6]

Positive definite, Negative definite, Positive semi definite, Negative semi definite with one example each.

