| I otal No           | o. of Questions: 12]                                   | SEAT No. :                                       |  |
|---------------------|--------------------------------------------------------|--------------------------------------------------|--|
| P1084               | 4                                                      | [Total No. of Pages : 4                          |  |
|                     | [4163] - 256                                           | May - fune 2012                                  |  |
|                     | T.E. (Electrical)                                      |                                                  |  |
|                     | POWER SYSTEM - II                                      |                                                  |  |
|                     | (2008 Pattern) (Sem II)                                |                                                  |  |
|                     | (2000 Luctorin) (Seint. 11)                            |                                                  |  |
| Time :3             | Hours]                                                 | [Max. Marks :100                                 |  |
|                     | tions to the candidates:                               | prium muras .100                                 |  |
| 1)                  |                                                        |                                                  |  |
| 2)                  | Answer 3 questions from section - I and 3 question     | ons from section - II.                           |  |
| 3)                  | Answers to the two sections should be written in       | 그는 사람들은 사람들이 되었다. 그는 사람들은 사람들이 되었다. 그는 사람들이 되었다. |  |
| 4)                  | Neat diagrams must be drawn wherever necessa           | 그 사람들은 사람들은 사람들이 되었다면 가장 그 사람들이 되었다면 하는데 되었다.    |  |
| 5)                  | Figures to the right indicate full marks.              |                                                  |  |
| 6)                  |                                                        | charts, electronic pocket                        |  |
| 7)                  | Assume suitable data, if necessary.                    |                                                  |  |
|                     | SECTION - I                                            |                                                  |  |
| <i>Q1)</i> a)       |                                                        |                                                  |  |
|                     | end.                                                   |                                                  |  |
| b)                  | A three phase 220 kV overhead line delivers 10         | 0 MVA, and power factor                          |  |
|                     | of 0.8 lagging at its receiving end. The constant      |                                                  |  |
|                     | and B = $110 \angle 75^{\circ}$ . ohms per phase. Find | [10]                                             |  |
|                     | i) - Sending end voltage and power angle.              |                                                  |  |
|                     | ii) Sending end active and reactive power.             |                                                  |  |
|                     | iii) Line losses and VAR absorbed by the line          | <b>.</b>                                         |  |
|                     | OR                                                     |                                                  |  |
| <b>Q2)</b> Wri      | ite short note on (any three)                          | [18]                                             |  |
| a)                  | Procedure of drawing circle diagram.                   |                                                  |  |
| b)                  | Line efficiency, regulation and compensation.          |                                                  |  |
| c)                  | Surge impedance loading.                               |                                                  |  |
| d)                  | Complex power.                                         |                                                  |  |
| egyline et<br>Holis |                                                        | THE THE                                          |  |
|                     |                                                        | १ भाग                                            |  |
|                     |                                                        |                                                  |  |

*P.T.O.* 

- Q3) a) List out the advantages and drawbacks of EHV transmission. [8]
  - b) Explain the phenomenon of corona and state the various methods to reduce it. [8]

### OR

- Q4) a) Describe the concept of corona loss in detail and explain the factors affecting it. [8]
  - b) A three phase, 50 Hz, 132 kV transmission line consists of conductors of 1.17cm diameter and are spaced equilaterally at a distance of 3 units. The line has surface irregularity factor = 0.96, The barometric pressure is 72 cm of Hg. at temperature of 20°C. Determine fair and foul weather corona loss per km/phase. Assume that at foul weather the critical disruptive voltage drops down to 80% of the value during fair weather condition. Dielectric strength of air = 30 kV (peak)/cm.
- Q5) a) What do you understand by a per unit system applicable to power system?What are the advantages and applications of p.u. system? [8]
  - b) Two generators rated 15 MVA, 13.2 kV and 20 MVA, 13.2 kV, respectively are connected in parallel to a bus. The bus feeds two motors rated 10 MVA, 15MVA respectively. The rated voltage of motors are 12.5 kV. The reactance of each generator is 15% and that of each motor is 20% on its own rating. Assume 60 MVA, 13.8 kV, base and draw a reactance diagram. [8]

# OR

- Q6) a) What do you mean by d.c. offset current? What is the effect of the instant of short circuit on the waveform of short circuit current (consists of d.c. offset) of R-L circuit.[8]
  - b) An 11 kV generating station has four identical three phase alternators A, B, C and D each of 10 MVA capacity and 12% reactance. There are two sections P & Q linked by a reactor rated at 10 MVA with 24% reactance. The single line diagram for the system is as shown. Load is connected as shown calculate current fed into three phase S.C. fault shown. [8]



- Q7) a) Show that Positive and Negative sequence currents is equal in magnitude but out of phase by 180° in the Line to Line fault. Draw sequence networks.
  [8]
  - b) The line to neutral voltages in a three phase system are  $V_{an} = 200 < 0^{\circ}$ ,  $V_{bn} = 600 < 100^{\circ}$   $V_{cn} = 400 < 270^{\circ}$ . Find the symmetrical components of the voltages.

### OR

- Q8) a) Draw zero sequence diagram for all types of combinations of two winding transformer. [8]
  - b) A 3-phase generator 'A' having positive, negative and zero sequence reactances of j0.3, j0.2, j0.05pu respectively has an earthed neutral. It feeds a 3-phase line through a transformer. T<sub>1</sub>. The transformer has X<sub>1</sub> = X<sub>2</sub> = X<sub>0</sub> = j0.12pu. and is connected in star-star with both neutrals earthed. For the line X<sub>1</sub> = X<sub>2</sub> = j0.15pu and X<sub>0</sub> = 0.35 pu. The other end of the line is connected to a transformer T<sub>2</sub> having X<sub>1</sub> = X<sub>2</sub> = X<sub>0</sub> = j0.1pu. The generator 'B' feeds T<sub>2</sub>. The positive, negative and zero sequence reactances of generator B are j0.3, j0.2, j0.05 pu respectively has an earthed neutral. The transformer T<sub>2</sub> is also connected in star-star with both neutrals earthed. Find currents flowing into fault from the three lines for a double line to ground fault, occurs on secondary of T<sub>1</sub>. Find fault current in pu. All the reactances are on same base. [8]

**Q9)** a) Form Y bus for the 4 bus system if the line series impedances are as under.

| Line (bus to bus) | Impedance    |  |
|-------------------|--------------|--|
| 1-2               | 0.15+j0.6 pu |  |
| 1-3               | 0.1+j0.4pu   |  |
| 1-4               | 0.15+j0.6pu  |  |
| 2-3               | 0.05+j0.2pu  |  |
| 3-4               | 0.05+j0.2pu  |  |

Neglect the shunt capacitance of the line.

b) Explain Gauss-Siedel method of load flow analysis with flow chart. [9]

## OR

- Q10)a) Explain in brief the procedure for formulation of  $Y_{bus}$  using singular transformation. [9]
  - b) Derive power flow equations for n bus power system and explain types of buses. [9]
- Q11)a) Explain different types of HVDC links. Name any two HVDC systems in India. [8]
  - b) Draw single line diagram of HVDO system. Explain components of it.[8]

#### OR

- Q12)a) Compare HVAC system with HVDC system. [8]
  - b) Explain in brief different control techniques used for HVDC system.[8]