Total No. of Questions: 8]

SEAT No. :

[Total No. of Pages: 3

[7]

P3611

[5560]-566 T.E.(Electrical)

CONTROL SYSTEM-I

(2015 Course) (Semester - II)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer any one question from each pair of questions: Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- Q1) a) Draw the electrical analogous network and write the equation

- b) The poles of a real rational transfer function are given as 0, -1 and -4. There is a single zero (of order 2) at S = (-3). Determine the transfer function and plot pole zero on S-plane. [5]
- c) The block diagram of a unity feedback control system shown in figure below. [8]

Determine the characteristic equation of the system ω_n , ξ , ω_d , t_p , M_p the time at which the first overshoot occurs, the time period of oscillation.

OR

P.T.O.

Q 2)	a)	Define the following:	[7]
		i) Time response	
		ii) Transient response	
		iii) Steady state response	
		iv) Delay time	
		v) Rise time	
		vi) Peak time	
		vii) Settling time	
	b)	A characteristic equation of a feedback control system is given $s^5 + s^4 + 4s^3 + 4s^2 + 2s + 1 = 0$ comment on stability.	1 by [4]
	c)	A unity feedback control system has an open loop transfer	[9]
		$G(s) = \frac{K}{s(s^2 + 4s + 13)}$ Sketch the root locus of the system by determining	ning
		the following	
		i) centroid and angle of asymptotes	
		ii) Angle of departure from the poles	
		iii) The value of K and the frequency at which the root locus cro the imaginary axis.	sses
<i>Q3</i>)	a)	Define and write formula	[8]
		i) Resonant frequency	0
		ii) Resonant Peak	: 2
		iii) Band width	
		iv) Plot M_r , M_p versus ξ for a second order system	
	b)	A unity feedback system has open loop transfer function	
		$G(s) = \frac{(s+2)}{(s+1)(s-1)}$ using nyquist criterion determine whether the clo	osed
		loop system is stable or not.	[8]
		OR	
Q4)	a)	Briefly state the nyquist criterion.	[6]
	b)		
		is given by $G(s) = \frac{20(0.1s+1)}{s(0.5s+1)(0.3s+1)}$ and find GM, PM, ω_{gc} , ω_{pc} .	[10]

- **Q5)** a) Define Gain margin, phase margin, phase crossover frequency, gain crossover frequency. [6]
 - Sketch the asymptotic plot for open loop transfer function given by $G(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$ from bode diagram determine GM, PM, $\omega_{\rm gc}$, $\omega_{\rm pc}$. [12]

OR

- Q6) a) Sketch bode diagram showing gain margin and phase margin for [6]
 - i) Stable system
 - ii) Unstable system
 - b) Using nyquist criterion investigate the stability of a closed loop control system whose open loop transfer function is given by [12]

G(s) =
$$\frac{K}{s(sT1+1)(sT2+1)}$$

Q7) a) Write short note on

[8]

- i) Lead compensator
- ii) AC Tachometer
- b) Explain the features of the following

[8]

- i) P-Controller
- ii) PI-Controller
- iii) PID-Controller

OR

Q8) a) Write short notes on synchros.

 $|\mathbf{6}|$

b) For the system shown below, design PID controller using Zigler Nichol tuning rule [10]

[5560]-566