[Total No. of Questions: 12] [Total No. of Printed Pages: 3]

UNIVERSITY OF PUNE [4362]-158

S. E. (Electrical) Examination - 2013

DIGITAL COMPUTIONAL TECHNIQUES (2008 Course)

[Time: 3 Hours] [Max. Marks: 100]

Instructions:

- 1 Answer 3 questions from section-I and 3 questions from section-II.
- 2 Answers to the two sections should be written in separate answer-books.
- 3 Neat diagrams must be drawn wherever necessary.
- 4 Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5 Assume suitable data, if necessary.

SECTION-I

- Q.1 A) Find the quadratic factor of $x^4 1.1x^2 + 2.3x^2 + [10]$ 0.5x + 3.3 = 0 after two iterations using Lin-Baristow's method. Use $\mathcal{P}_0 = 1$ and $q_0 = 1$
 - B) Explain round –off error and truncation error with suitable example [8]

OR

- Q.2 A) Explain absolute error and relative error with suitable [6] example.
 - B) Using Birge-Vieta method find root of $\mathcal{X}^4 + \mathcal{X}^3 + 5\mathcal{X}^2$ [6] +4x + 4 = 0 at the end of two iterations with initial value $x_0 = 1$.
 - C) Explain floating point algebra and normalised floating [6] point algebra with suitable examples.
- Q. 3 A) Find the real root of $2x 3 \sin x 5 = 0$ correct to [8] four decimal places with initial value $x_0 = 1$ using Newton Raphson's method.
 - B) Explain false of position method for solution of transcendental equation. [8]

OR

Q. 4 A) Determine $\sqrt{29}$ using bisection method correct up to [8] three decimal places.

- B) Explain Chebyshev's method to determine root of transcendental equation [8]
- Q. 5 A) Explain Gauss elimination method for solution of linear simultaneous equation. [8]
 - B) Solve following system of equation using Gauss [8] Seidal method

$$10x - 2y + 3z = 23;$$

$$2x + 10y - 5z = -33;$$

$$3x - 4y + 10z = 41$$

OR

Q. 6 A) Solve following system of equation using Gauss [8] Jordan method

$$2x + y + 4z = 12;$$

 $8x - 3y + 2z = 23;$
 $4x + 11y - z = 33$

B) Explain Gauss Jacobi's method for solution of linear [8] simultaneous equations.

SECTION II

- Q. 7 A) Explain least square method to fit the data into a straight line. y = ax + b. [8]
 - B) Find the interpolating polynomial using [10]
 - i) Lagrange's formula
 - ii) Newton's divided difference formula, for the following data and hence show that both the methods give raise to same polynomial

X	1	2	3	5
у	0	7	26	124

OR

- Q. 8 A) Derive Lagrange's interpolation formula for unequally [8] spaced data.
 - B) For the following table of values, estimate y(7.5) and [10] y(1.5) using appropriate interpolation formula

_	/ <u> </u>								
	X	1	2	3	4	5	6	7	8
	у	1	8	27	64	125	216	343	512

- Q. 9 A) Explain Taylor's series method for solution of ordinary differential equation [8]
 - B) Compute y(0.3) with h = 0.1 from $\frac{dy}{dx} = y \frac{2x}{y}$, [8]

y(0) = 1 by modified Euler's method.

OR

- Q. 10 A) Given $\frac{dy}{dx} = \frac{1}{x+y}$ y (0) = 2. [8] If y (0.2) = 2.09, y(0.4) = 2.17, y(0.6) = 2.24, find y(0.8) and y(1.0) using Mile's method.
 - B) Explain modified Euler's method for solution of ordinary differential equation. [8]
- Q.11 A) Derive formula of Simpson's $\left(\frac{1}{3}\right)^{rd}$ Rule as a special case of Netwon Cote's formula for numerical integration. [6]
 - B) Evaluate $\int_0^{0.9} log_e (1 + \sqrt{x}) dx$ using trapezoidal rule of integration with 9 sub-intervals. [5]
 - C) Evaluate $\int_0^{\frac{\pi}{2}} e^{\sin x} dx$, using Simpon's $\left(\frac{3}{8}\right)^{th}$ rule [5] With 6 sub-intervals.

OR

- Q. 12 A) Derive formula of Trapezoidal Rule as a special case [6] of Newton Cote's formula for numerical integration.
 - Derive formula for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = x_n$ using Newton backward interpolation formula. [5]
 - Evaluate $\int_{1.0}^{1.8} \frac{e^x + e^{-x}}{2} dx$ using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule by taking h = 0.2