UNIVERSITY OF PUNE

[4362]-158

S. E. (Electrical) Examination - 2013
 DIGITAL COMPUTIONAL TECHNIQUES (2008 Course)
 [Time: 3 Hours]
 [Max. Marks: 100]

Instructions:

1 Answer 3 questions from section-I and 3 questions from section-II.
2 Answers to the two sections should be written in separate answer-books.
3 Neat diagrams must be drawn wherever necessary.
4 Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
5 Assume suitable data, if necessary.

SECTION -I

Q. $1 \quad$ A) Find the quadratic factor of $x^{4}-1.1 x^{2}+2.3 x^{2}+$ $0.5 x+3.3=0$ after two iterations using LinBaristow's method. Use $\mathcal{P}_{0}=1$ and $q_{0}=1$
B) Explain round-off error and truncation error with suitable example

OR

Q. 2 A) Explain absolute error and relative error with suitable example.
B) Using Birge-Vieta method find root of $X^{4}+X^{3}+5 X^{2}$ $+4 x+4=0$ at the end of two iterations with initial value $x_{0}=1$.
C) Explain floating point algebra and normalised floating point algebra with suitable examples.
Q. 3 A) Find the real root of $2 x-3 \sin x-5=0$ correct to four decimal places with initial value $x_{0}=1$ using Newton Raphson's method.
B) Explain false of position method for solution of transcendental equation.

OR
Q. 4 A) Determine $\sqrt{29}$ using bisection method correct up to three decimal places.
B) Explain Chebyshev's method to determine root of transcendental equation
Q. 5 A) Explain Gauss elimination method for solution of linear simultaneous equation.
B) Solve following system of equation using Gauss

Seidal method

$$
\begin{array}{cl}
10 x-2 y+3 z & =23 \\
2 x+10 y-5 z & =-33 \\
3 x-4 y+10 z & =41 \\
\text { OR }
\end{array}
$$

Q. 6 A) Solve following system of equation using Gauss

Jordan method

$$
\begin{gathered}
2 x+y+4 z=12 \\
8 x-3 y+2 z=23 \\
4 x+11 y-z=33
\end{gathered}
$$

B) Explain Gauss Jacobi's method for solution of linear simultaneous equations.

SECTION II

Q. 7 A) Explain least square method to fit the data into a straight line. $y=a x+b$.
B) Find the interpolating polynomial using
i) Lagrange's formula
ii) Newton's divided difference formula, for the following data and hence show that both the methods give raise to same polynomial

x	1	2	3	5
y	0	7	26	124
$\mathbf{O R}$				

Q. 8 A) Derive Lagrange's interpolation formula for unequally spaced data.
B) For the following table of values, estimate $y(7.5)$ and $y(1.5)$ using appropriate interpolation formula

x	1	2	3	4	5	6	7	8
y	1	8	27	64	125	216	343	512

Q. 9 A) Explain Taylor's series method for solution of ordinary differential equation
B) Compute $y(0.3)$ with $h=0.1$ from $\frac{d y}{d x}=y-\frac{2 x}{y}$,

> y $(0)=1$ by modified Euler's method.
> OR
Q. 10
A) \quad Given $\frac{d y}{d x}=\frac{1}{x+y} \quad y(0)=2$.

If $y(0.2)=2.09, y(0.4)=2.17, y(0.6)=2.24$, find $y(0.8)$ and $y(1.0)$ using Mile's method.
B) Explain modified Euler's method for solution of ordinary differential equation.
Q. 11 A) Derive formula of Simpson's $\left(\frac{1}{3}\right)^{r d}$ Rule as a special case of Netwon Cote's formula for numerical integration.
B) Evaluate $\int_{0}^{0.9} \log _{e}(1+\sqrt{x}) d x$ using trapezoidal rule of integration with 9 sub-intervals.
C) Evaluate $\int_{0}^{\frac{\pi}{2}} e^{\sin x} d x$, using Simpon's $\left(\frac{3}{8}\right)^{\text {th }}$ rule

With 6 sub-intervals.

OR

Q. 12 A) Derive formula of Trapezoidal Rule as a special case of Newton Cote's formula for numerical integration.
B) Derive formula for $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=x_{n}$ using Newton backwardinterpofation formula.
C) Evaluate $\int_{1.0}^{1.8} \frac{e^{x}+e^{-x}}{2} . d x$ using Simpson's $\left(\frac{1}{3}\right)^{r d}$ rule by taking $h=0.2$

