Total No. of Questions—12]

[Total No. of Printed Pages-4+2

[3662]-143

S.E. (Electrical) (I Sem.) EXAMINATION, 2009 MATERIAL SCIENCE

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the two Sections should be written in separate answer-book.
 - (ii) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 from Section I.
 - (iii) Answer Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10,Q. No. 11 or Q. No. 12 from Section II.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of logarithmic tables, slide rules and electronic pocket calculator is allowed.
 - (vi) Assume suitable data, if necessary.

Physical Constants:

- (1) Angstrom unit (AU) = 1×10^{-10} metres.
- (2) Boltzmann's constant (k) = 1.380×10^{-23} joule-degree⁻¹.
- (3) Dielectric constant of free space (\in_0) = 8.85 × 10⁻¹² farad-metre⁻¹.
- (4) Charge on electron (e) = 1.601×10^{-19} coulombs.
- (5) Mass of electron $(m) = 9.107 \times 10^{-31}$ kg.
- (6) Permeability of free space $(\mu_0) = 4\pi \times 10^{-7}$.
- (7) Mass of proton $(m_p) = 1.627 \times 10^{-27}$ kg.
- (8) Velocity of light (c) = 2.998×10^8 metre per second.
- (9) Electron volt (eV) = 1.602×10^{-19} joules.
- (10) Debye unit = 3.33×10^{-30} coulomb-metre.

P.T.O.

SECTION I

ww.sppuon	lline.com

1.	(a)	Deriye Clausius-Mossotti relation as applied to dielectr						ectric ma	terials	
		in s	static	field.	State	clearly	the	assumptions	made.	[6]

- (b) The number of atoms in volume of one cubic metre of hydrogen gas is 9.8×10^{26} . The radius of the hydrogen atom is 0.53 AU. Calculate the polarizability and relative permittivity. [6]
- (c) What is meant by loss tangent as referred to polar dielectrics. Hence give its significance. [4]

Or

- 2. (a) With a neat sketch explain the construction and working of photo-voltaic cell. [6]
 - and a plate separation of 2×10^{-3} m across which a potential of 10 V is applied. If a material having dielectric constant of 6.0 is positioned with in the region between the plates, calculate :

A parallel plate capacitor having an area of $6.45 \times 10^{-4} \text{ m}^2$

- (i) The capacitance
- (ii) The magnitude of charge stored on each plate
- (iii) The electric field density D
- (iv) The polarization P.
- (c) Write a note on Piezo-electricity. [4]
- 3. (a) State the properties and applications of: [6]
 - (i) Transformer oil
 - (ii) SF₆ gas.

(*b*)

(<i>b</i>)	Define breakdown voltage in connection with dielectric mater www.sppuonline.					
	Explain various factors affecting breakdown strength of liquid					
	dielectric material. [6]					
(c)	Discuss the insulating materials used for power and distribution					
	transformer. [4]					

)r

- 4. (a) State different mechanisms of breakdown in vacuum. Explain any one. [6]
- (b) What do you mean by fibrous insulating material. What is their major drawback? How can it be overcome? [6]

What is meant by Townsend's primary and secondary lionization

- coefficients? [4]

 5. (a) Define relative permeability. Show that the relative
- permeability $\mu_r = 1 + \chi_m$, where χ_m is the magnetic susceptibility. [6]

 (b) Explain classification of magnetic material on the basis of distribution of dipole moments. [8]
- (c) Calculate hysteresis loss in a specimen of iron subjected to magnetization of 50 Hz. The weight of the specimen is 40 kg and its density is 7680 kg/m³. The hysteresis loop area is equivalent to 198 J/m³. [4]

3

- 6. (a) What is Curie temperature for ferromagnetic material? Describe Curie-Weiss law. [6]
 - (b) Differentiate between:

[6]

- (i) Soft and hard magnetic materials
- (ii) Ferromagnetism and antiferromagnetism.
- (c) A magnetic field strength of Fe_2O_3 is 10^6 A/m. If the susceptibility of Fe_2O_3 at room temperature is 1.25×10^{-3} , calculate induced magnetization, induced field density and permeability μ . [6]

SECTION II

7. (a) State the properties and applications of:

[12]

- (i) Eureka
- (ii) Tungsten
- (iii) Kanthal.
- (b) Annealed copper has resistivity 17.2 × 10⁻⁹ ohm-m at 20°C. With 2 atomic percent of nickel, the resistivity of alloy of copper and nickel becomes 4.06 × 10⁻⁸ ohm-m. With the addition of 3 percent atomic silver, the resistivity of alloy of copper and silver becomes 1.98 × 10⁻⁸ ohm-m. What, will be the resistivity of copper alloy for addition of 0.3 atomic percent of nickel and 0.2 atomic percent of silver at 20°C.

Or

8. (a) Why is carbon preferred for brushes in electric machines?

[4]

[3662]-143

- (b) What are the groups into which solders are grouped spptistine.com their applications. [4]
- (c) A 230 volt filament lamp dissipates 60 watt at 2700°C. Resistivity of filament material at 20°C is 4.3 × 10⁻⁶ ohm-cm and its temperature coefficient at 20°C is 0.005/°C. Calculate the length of filament at 20°C if its diameter at 20°C is 0.028 mm.
- **9.** (a) What are carbon nanotubes? Discuss their electrical, mechanical and vibrational properties. List some applications of carbon nanotubes. [10]
 - (b) Write a short note on single electron transistor. [6]

Or

- **10.** (a) Discuss in brief the concepts of energy bands in insulators, semiconductors and conductors. [10]
 - (b) Write a short note on BN nanotubes. [6]
- 11. (a) With a neat connection diagram, explain a method for determining dielectric strength of transformer oil as per relevant IS code of practice. [10]
 - (b) What is $\tan \delta$ of a dielectric? Explain. Describe the method of measurement of $\tan \delta$ of a dielectric by Schering bridge as per IS code of practice. [8]

P.T.O.

- 12. (a) With a neat connection diagram, explain the method for measurement of dielectric strength of air as per relevant IS code of practice. What inferences will you draw from this test?
 - (b) What is partial discharge of a dielectric? Explain a method to determine the partial discharge of a dielectric solid in the laboratory. [8]

www.sppuonline.com