[Total No. of Printed Pages—5

Seat	A A
No.	

[5668]-142

S.E. (Elect/E.&TC) (Second Semester) EXAMINATION, 2019 ENGINEERING MATHEMATICS—III

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt question Nos. 1 or 2, 3 or 4, 5 or 6, 7 or 8.
 - Neat diagrams must be drawn wherever necessary.
 - Figures to the right indicate full marks. (iii)
 - Use of electronic pocket calculator is allowed. (iv)
 - Assume suitable data, if necessary.
- 1. (a)

 - (*b*)

Solve any
$$two$$
:
$$(i) \quad (D^3 + 6D^2 + 12D + 8)y = e^{-2x} + 3^x + \cos 2x$$

$$(ii) \quad x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 4y = \cos(\log x) + \sin(\log x)$$

$$(iii) \quad \frac{d^2y}{dx^2} + 4y = \tan 2x \text{ (By method of variation of parameter)}.$$
Find Fourier sine transform of . [4]
$$f(x) = \begin{cases} \frac{\pi}{2} & 0 < x < \pi \\ 0 & x > \pi \end{cases}.$$
P.T.O.

- A 0.1 henry inductor, a 0.004 farad capacitor and a generator 2. (a)having e.m.f. given by 180 cos 40t, $t \ge 0$ are connected in series. Find the instantaneous charge Q and current I, if I = Q = 0 at t = 0.[4]
 - (*b*) [4]
 - Find Z-transform of $\frac{2^k}{k}$, $k \ge 1$.
 - (ii) Find inverse z-transform of $\frac{1}{(z-3)(z-2)}$ 2 < |z| < 3. Find f(k), given that : for
 - [4] $12f(k+2) - 7f(k+1) + f(k) = 0, k \ge 0, f(0) = 0, f(1) = 3.$
- $\frac{dy}{dx} = \frac{1}{x^2} \frac{y}{x}, \quad y(1) = 1.$ **3.** Given: (*a*)

Evaluate y(1.1) by Euler's modified method (Take h =

(*b*)

x	0	1	2
у	2	3	6

Find directional derivative of $\phi = xy^2 + yz^3$ at (1, -1, 1) along (c) the vector $\overline{i} + 2\overline{j} + 2\overline{k}$. [4]

- 4. (*a*) [4]
- Show that (any one): $(i) \quad \nabla^2 [\nabla . (\bar{r}/r^2)] = 2/r^4$

(ii)
$$\sqrt{\left(\frac{\overline{a}\cdot\overline{r}}{r^2}\right)} = \frac{\overline{a}}{r^2} - \frac{2(\overline{a}\cdot\overline{r})}{r^4}\overline{r}$$

- Show that the vector field $\overline{F} = (y^2 \cos x + z^2) \overline{i} + (2y \sin x) \overline{j}$ (*b*) + $2xzar{k}$ is irrotational and find scalar potential ϕ such that [4]
- Evaluate $\int_0^3 \frac{dx}{1+x}$ by dividing the interval into six parts using (c) Simpson's $\frac{3}{8}$ th rule correct upto four decimal places.
- Evaluate the integral $\int_c \overline{F} \cdot d\overline{r}$, where $\overline{F} = (3x^2 + 6y)i 14yzj$ **5.** $+20 xz^2k$ and C is the curve x = t, y = 2, $z \neq t^3$ from t = 0 to t = 1.[4]
 - Verify Green's lemma for $\overline{F} = x^2i + xyj$ over the region bounded (*b*) x = 0, y = 0, x = 1, y = 1by the boundaries: [5]

$$x = 0, y = 0, x = 1, y = 1$$

[5668]-142

- Stokes theorem to evaluate $\int_{\mathbb{C}} \; \overline{\mathbb{F}} \, . \, d\overline{r}$ where (c) $\overline{\mathbf{F}} = xy^2i + yj + xz^2k$ over the surface bounded by x = 0, [4]
- Use Green's Lemma to evaluate $\int_{C} (3ydx + 2xdy)$ where C is **6.** (a)the boundary of the region bounded by y = 0, $y = \sin x$ [4]
 - Find the work done by force field $\overline{F} = 2xy^2i + (2x^2y + y)j$ in (*b*) taking a particle from (0, 0, 0) to (2, 4, 0) along the parabola $y = x^2, z = 0.$ [4]
 - Maxwell's equations are given by: [5] $\nabla \cdot \vec{\mathbf{E}} = 0, \ \nabla \cdot \vec{\mathbf{H}} = 0, \ \nabla \times \vec{\mathbf{H}} = \frac{\partial \vec{\mathbf{E}}}{\partial t}, \ \nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{H}}}{\partial t}$ then show that $\vec{\mathbf{E}}$ satisfies the equation $\nabla^2 u = \frac{\partial^2 u}{\partial t^2}$.

- If f(s) = u + iv is analytic function with constant amplitude, 7. (a)show that f(z) is constant. [4]
 - Evaluate: (*b*)

$$\oint_{\mathcal{C}} \cot z \, dz$$

where 'c' is the circle |z| =

Find the bilinear transformation, which maps the points (c)1, i, -1 from z-plane onto the points i, 0, -i of the w-plane [4] respectively.

[5668]-142

[5]

8. (a)

$$u = \frac{1}{2}\log(x^2 + y^2)$$

If : $u = \frac{1}{2} \log(x^2 + y^2)$ find v such that f(z) = u + iv is analytic. Evaluate : (*b*) [4]

$$\oint_{\mathcal{C}} \frac{z^2 + 1}{z - 2} dz$$

- (c) r=c are mapped onto family of ellipses. What happens if r=1.

[5668]-142

[4]