Total No. of Questions-8]

[Total No. of Printed Pages-3
[5668]-153
S.E. (Electrica) (First Semester) EXAMINATION, 2019

ANALOG AND DIGITAL ELECTRONICS
(2015 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Attempt Q. Nos. 1 or 2, Q. Nos. 3 4, Q. Nos. 5 or 6, Q. Nos. 7 or 8.
(ii) Figures to the right indicate fiull marks.

1. (a) (i) Perform the following BCD addition : (167) 10 and ${ }^{(396)}{ }_{10}$.
(ii) Write a short note on Excess-3 code with suitable example.
(b) Explain ring counter with neat circuit diagram. Draw thetiming diagram if the initial data loaded is $(0001) 2$.
[6]
Or
2. (a) Explain Mod-8 asynchronous counter with timing diagram and transition table.
(b) Minimize the following logic function using K-map.

$$
\begin{equation*}
f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Pi \mathrm{M}(4,6,10,12,13,15) \tag{6}
\end{equation*}
$$

P.T.O.
3. (a) What is the difference between fixed and variable voltage regulator? Explain the function of LM317 as adjustable voltage regulator.
(b) Explain V to converter with grounded load.

Or

4. (a) Explain the working of Op-Amp as Zero Crossing Detector with circuit diagram and waveforms.
(b) Explain working of IC 555 astable multivibrator.
5. (a) What is DC load line ? Derive equation for DC load line and show Q-point on DC load inne.
(b) Draw RC coupled amplifier Also draw its frequency response. [6] Or
6. (a) Write a short note on push pull amplifier.
(b) Explain drain and transfer characteristics of JFET.
7. (a) Explain the construction and working of three-phase full wave bridge rectifier connected to R -load with neat diagram. [7]
(b) Draw the circuit diagram and state the expression of the following for single-phase full wave centre tap rectifier :
[6]
(i) Average output voltage
(ii) RMS output voltage
(iii) Ripple factor.
8. (a) A voltage of $220 \sin (100 \Pi t)$ is applicable to a half wave rectifier with @ load vesistance $10 \mathrm{k} \Omega$. Calculate the maximum current, RMS current, average current, ac power output and ripple factor.
(b) Compare diode rectifier with precision rectifier.
[6]
