[8]

P.T.O.

Total No. of Questions: 12] SEAT No.: P1449 [Total No. of Pages: 3 [4759]-205 **B.E.** (Computer Engineering) **DESIGN & ANALYSIS OF ALGORITHMS** (2008 Course) (Semester - I) (410441) Time: 3 Hours] [Max. Marks:100 Instructions to the candidates: Answer three questions from section- I and three questions from section -II. Answers of section - I and section - II should be written on separate answer sheets. 2) Figures to the right indicate full marks. 3) 4) Draw neat diagram wherever necessary. Make suitable assumptions wherever necessary. *5*) **SECTION - I** Give Greedy Prim's minimum spanning tree algorithm. Also explain it **Q1)** a) with suitable example. [10]Solve following recurrence: [8] b) $t(n) - 2 t(n-1) = 3^n$ OR Write an algorithm for Knapsack greedy problem. **Q2)** a) Find an optimal solution for following knapsack problem: n=4, M=70, $w=\{10, 20, 30, 40\}$, $P=\{20, 30, 40, 50\}$ [10] Write an algorithm for merge sort. State its time complexity by solving b) recurrence equation of merge sort. [8] Let n = 4 and $\{k1, k2, k3, k4\} = \{do, if, int, while\}.$ *Q3*) a) Let $p(1:4) = \{3, 3, 1, 1\}$ Let $q(0:4) = \{2, 3, 1, 1, 1\}$

Compute & construct OBST for above values.

www.sppuonline.com

t	0)	elen	nents	of dy	lain the ynamic p amming	orog	ramn	ning	and	give	_		_		
							OR	2							
Q4) a	a)	Explain multistage graph problem with forward approach using dynamic programming with an example. [8]												mic [8]	
ł	b)	Define the Traveling Salesperson Problem. Solve the TSP problem using Dynamic programming where the edge lengths are given as: [8]											ing [8]		
		0	10	15	20										
		5	0	9	10										
		6	13	0	12										
		8	8	9	0										
Q5) a	a)	-	lain i same.		ail backt	rack	ing s	trateg	gy an	d giv	e cor	ntrol a	abstra	ction	for [8]
ŀ	b)	Write the control abstraction for LC-Search. Explain how Traveling Salesperson problem is solved using LCBB. [8]													
OR															
Q6) a	a)	Write an algorithm on Hamiltonian cycles using Backtracking Strategy.										.[8]			
ŀ	b)	Write an algorithm to solve n queen's problem using backtracking methods. What is the time complexity of this algorithm? [8]													
SECTION - II															
Q7) a	a)	State	e and	expla	ain in det	tail (Cook	's the	oren	1.				[10]
ŀ	b)	Describe with example following class:													
		i)	P		ii)	N.	P								[8]
OR															
[4759]-205								2							

Q8) a)	Prove that CNF-SAT is polynomially transformable to DHC, hence D is NP-complete.	НС [10]
b)	Explain NP hard code generation problem.	[8]
Q9) a)	Explain in detail with example Logarithmic time merging algorithm.	[8]
b)	Explain with example parallel evaluation of expression.	[8]
	OR	
Q10) a)	Explain All pairs shortest paths. Also give parallel shortest paths algorit	hm. [8]
b)	State and explain pointer doubling problem with algorithm, what is time complexity of this algorithm.	the [8]
<i>Q11)</i> a)	Explain Resource - Allocation algorithm with deadlock avoidance.	[8]
b)	Explain in detail sorting and convex Hull algorithm.	[8]
	www.spp QR line.com	
Q12) a)	Explain Image edge detection algorithm.	[8]
b)	Explain how Huffman's technique is used for data coding.	[8]

888