		www.sppuc	
Total No	o. of Questions :12]	SEAT No. :	
P1799	[4859]-202	[Total No. of Pages :3	
	B.E (Computer Engg.)		
	DESIGN & ANALYSIS OF ALG		
	(2008 Course) (410441) (Semo	ester - I)	
Time: 3	Hours]	[Max. Marks :100	
	ons to the candidates:	,	
1)	Answer 3 questions from section I and 3 questions	from section II.	
2)	2) Answers to the two sections should be written in separate books.		
3)	Neat diagrams must be drawn wherever necessary.		
4)	Figures to the right indicate full marks.		
5)	Assume suitable data, if necessary.		
	<u>SECTION - I</u>		
Q1) a)	Prove by contradiction: There exist two irrathat x^y is rational.	tional numbers x and y such	
b)	Write an algorithm for Merge Sort. State its	time complexity. [6]	
c)	Explain the Greedy Kruskal's minimum spar	nning tree. [4]	
	OR		
Q2) a)	Consider the following instances of knap $(p_1, p_2, p_3) = (25, 14, 15)$ and (w_1, w_2, w_3) feasible solutions using greedy method.	-	
b)	Explain a control abstraction for divide and recurrence relation for quick sort.	conquer strategy. Write the [6]	
c)	Explain the different ways of measuring the r	unning time of an algorithm. [4]	

Q3) a) With respect to dynamic programming explain the following: [8]

- i) Principle of Optimality
- ii) Optimal substructure
- b) State multistage graphs problem and explain how it can be solved using forward approach. [8]

OR

Q4) a)	Explain Travelling Salesperson problem using dynamic p	orogramming with
	example. Specify its complexity.	[8]

b) Let n=3 and
$$(k_1, k_2, k_3) = \{do, if, while\}$$
 [8]

Let $p(1:3) = \{0.5, 0.1, 0.05\}$

Let $q(0:3) = \{0.15, 0.1, 0.05, 0.05\}$

Compute and construct OBST for above values.

- **Q5)** a) Write an algorithm to solve 8-Queens problem using backtracking method. [8]
 - b) Explain the difference between FIFO and LC branch-and-bound solution to 0/1 knapsack. [8]

OR

- Q6) a) Write recursive backtracking schema for m coloring of the graph.Determine the time complexity of the same.[8]
 - b) Explain how branch and bound method can be used to solve travelling salesperson problem. [8]

SECTION - II

- Q7) a) Explain how Directed Hamiltonian Cycle (DHC) reduces to travelling salesperson decision problem (TSP).[6]
 - b) Show that the job sequencing with deadlines problem is NP-hard. [8]
 - c) What are non-deterministic problems? Explain classes NP-hard and NP-complete. [4]

OR

- **Q8)** a) Show that partition reduces to minimum finish time preemptive job shop schedule. [6]
 - b) Explain NP-Hard scheduling problem with example. [6]
 - c) State and explain Cook's Theorem. [6]

[4859]-202

Q9) a)	Write an algorithm for prefix computation. Determine its time complexity. [8]	
b)	Explain how graph problems can be solved on parallel processors. [8]	
OR		
<i>Q10)</i> a)	Write and explain pointer doubling algorithm with suitable example. [8]	
b)	How merge sort algorithm can be implemented on multiprocessors? Explain it with an example. [8]	
<i>Q11)</i> a)	Explain the sequential and parallel technique for solving the convex Hull problem? [8]	
b)	What is meant by heuristic algorithms? Explain any one heuristic search algorithm. [8]	
OR		
<i>Q12)</i> a)	Explain resource allocation algorithm with deadlock avoidance. [8] www.sppuonline.com	
b)	Explain Huffman coding algorithm with example. [8]	

888