Total No. o	f Questions : 6]	SEAT No. :		
P67	Oct./TE/Insem186	[Total No. of Pages : 2		
T.E. (Computer Engineering)				
THEORY OF COMPUTATION				
(2015 Course) (Semester - I) (310241)				
(2010 5)(155)(501105001 1)				
Time: 1 Ho	our]	[Max. Marks : 30		
Instructions to the candidates:				
1) A	ttempt questions Q1 or Q2, Q3 or Q4, and Q5 or	<i>Q6</i> .		
2) N	leat diagrams must be drawn wherever necessary.			
3) A	ssume suitable data, if necessary.	290		
		$\hat{\mathcal{Y}}_{\mathcal{S}}$		
	6.			
01)				
Q1) a)	Define the following terms with example-	[3]		
C	DFA ii) NFA iii)	epsilon NFA		
b)	Construct NFA with ϵ moves which accept	ts a language consisting the		
	strings of any number of a's followed by a	ny number of b's, followed		
	by any number of c's.	[3]		
-)	Design Finite And water (TA) 6	τωία · · · · · · · · · · · · · · ·		
	Design Finite Automata (FA) for accepting			
	even numbers of 0's and odd number of 1'	s. [4]		
	OR			
	6.			
Q2) a)	Compare Moore machine and Mealy machi	ne. (2)		

- b) Construct a Mealy Machine which can output EVEN/ODD if the total number of 1's in the input is even or odd. The input symbols are 0 and 1.[4]
- c) Convert the following Mealy Machine to Moore machine [4]

P.T.O.

<i>Q3</i>)	a)	Define the following terms: [2]		
		i) Kleene closure Positive closure		
	b)	Illustrate in English the language of the following regular expression:		
		$(1+\varepsilon)(00*1)*0*$ [2]		
		ii) Explain in brief, applications of regular expressions. [2]		
	c)	Determine a regular expression over the alphabet $\Sigma = \{a, b\}$. [4]		
		i) All strings that contain an even number of 'b's		
		ii) All strings that do not end with 'aa'		
		OR		
<i>Q4</i>)	a)	Justify if true or false the following: [3]		
		very subset of a regular language is regular		
	b)	xplain the applications of regular expression in GREP utilities in Unix.[3]		
	c)	onstruct minimized DFA accepting language represented by regular		
		expression $0*$ 1 * 2 *. Convert given regular expression to NFA with ε moves. [4]		
<i>Q5</i>)	a)	Discuss applications of Context Free Grammar in XML. [3]		
	b)	Construct the Context Free Grammar for the language having any number		
		of a's over the set $\Sigma = \{a\}$ [3]		
	c)	Simplify the grammar: [4]		
		$S \to Ab, A \to a, B \to C b, C \to D, D \to E, E \to a$		
	O O O O O O O O O O O O O O O O O O O			
Q6)	a)	Discuss applications of Context Free Grammar in Syntax Analysis of a		
		Compiler.		
	b)	Describe the language L for given Context Free Grammar $G = [\{S\}, \{S\}, \{S\}, \{S\}, \{S\}, \{S\}, \{S\}, \{S\}, $		
	a)	$\{a,b\}$, P, $\{S\}$] where $P = \{S \rightarrow aSb, S \rightarrow ab\}$. [3]		
	c)	Optimize the CFG given below by reducing the grammar where S is a start symbol. [4]		
		$S \rightarrow A \mid 0C1$		
		$A \rightarrow B \mid 01 \mid 10$		
		$C \rightarrow \varepsilon \mid CD$		
	6.			
		Optimize the CFG given below by reducing the grammar where S is a start symbol. $[4] S \rightarrow A \mid 0C1 \\ A \rightarrow B \mid 01 \mid 10 \\ C \rightarrow \epsilon \mid CD$		
TE/	TE/Insem186 2			