UNIVERSITY OF PUNE [4363]-255

T. E.(Comp. Engineering.)Examination - 2013 THEORY OF COMPUTATION (2008 Pattern)

[Total No. of Questions:]

[Total No. of Printed Pages :5]

[Time: 3 Hours] [Max. Marks: 100]

Instructions:

- (1) Answers to the two sections should be written in separate answer-books.
- (2) Assume suitable data, if necessary.

SECTION-I

Q1 a) Define the following with examples:

[8]

[8]

- Kleen closure
- An alphabet
- Regular expression
- Formal language
- b) Design a Moore machine that will read sequences made up of the letters A, E, I, O, U and will give as output the same sequence except in case where I directly follows an E, I will be changed to U.

OR

- Q2 a) Design a finite automata that reads strings made up of letters in the Word 'CHARIOT' and recognize those strings that contain the word 'CAT' as a substring.
 - b) Construct DFA equivalent to NFA

	0	1
→P	p,q	p
q	r	r
r	s	•
<u>©</u>	s	s

ا ما

Q3 a) Prove that the FA whose transition graph is as shown below accepts [8]

The set of all strings over the alphabet $\{0,1\}$ with an equal number Of 0's and 1's, such that each prefix has atmost one more 0 than 1's And atmost one more 1 than 0's.

	b) Show that L={ a^p/p is prime} is not regular. Make use of pumping	[6]		
	lemma and explain the steps in detail.			
	c) Describe in English language accepted by R.E. \Rightarrow (0+1)* 0	[2]		
OR				
Q4	a) State and explain in detail the closure properties of regular sets	[8]		
	b) Explain the application of regular expressions in lexical analysis phase	:		
	of compiler	[6]		
	c) State the pumping lemma for regular sets	[2]		
Q5	a) Convert the following CFG into CNF(Chomsky Normal Form)	[6]		
	$S \longrightarrow ABA$			
	A→aA ∈			
	$B \rightarrow bB \mid \in$			
	b) Write a CFG for generating identifiers in higher-level languages such	[4]		

as 'C'. identifiers can be defined by the regular expression(letter). (letter

c) Obtain a DFA accepting the regular language defined by the following [8]

1 digit)*

right-linear grammar

 $S \rightarrow OA|1B$ $A \rightarrow OC|1A|0$

OR

Q6 a) Convert the following CFG into GNF(Greibach Normal Form) [8]
$$S \rightarrow AB$$
 $A \rightarrow BS | b$
 $B \rightarrow SA | a$
b) Construct a grammar G to represent a language L which is a set of all palindromes over $\{a,b\}$
c) Consider the grammar G given by $S \rightarrow S+S | S^*S | a|b$, find the derivation tree for a^*b+a^*b , is the grammar ambiguous

SECTION-II

Q7 a) Design a PDA to check whether the given expression is a valid Postfix expression.
b) Compare deterministic PDA with non-deterministic PDA [4]
c) Design a PDA for the following CFG G [6]
$$G = \{S \rightarrow aAA \quad A \rightarrow bS \quad A \rightarrow aS \quad S \rightarrow a \}$$
OR

Q8 a) The following PDA accepts a language: $L = \{a^nb^ma^n | m, n \ge 1\}$ [12]
Construct equivalent CFG for L such that $L(G) = N(A)$

$$A = (\{q_0q_1\}, \{a, b\}, \{a, z_0\}, \delta, q_0, z_0, \phi)$$
Where δ is given as follows:
$$\delta(q_0, q, z_0) = \{(q_0, q, z_0)\}$$

$$\delta(q_0, q, q) = \{(q_0, aa)\}$$

$$\delta(q_0, b, a) = \{(q_1, a)\}$$

$$\delta(q_1, a, a) = \{(q_0, e)\}$$

$$\delta(q_1, b, a) = \{\delta(q_1, a)\}$$

$$\delta(q_1, e, z_0) = \{(q_0, e)\}$$
b) Compare PDA with FA (finite automata) [4]
Q9 a) Design a turning machine which checks for the language $L = \{a^nb^n\}$ [8]
b) Define Turing machine

 $B \rightarrow 1B|1A|1$

	c) Design a TM to subtract two unary numbers, the original numbers	[8]
	need not be retained	
	OR	
Q10	a) Design a turing machine to compute 2's complement of a given	[6]
	Binary number.	
	b) Write short note on universal turing machine along with example	[6]
	c) Compare NFA, DFA, NPDA, DPDA, turing machines with	[6]
	reference to type of the grammar	
Q11	a) Show that if L_1 and L_2 are recursive languages, then $L_1 \cup L_2$ and	[8]
	$L_1 \cap L_2$ are also recursive	
	b) Explain in detail "Post's Correspondence Problem" with the help	[8]
	of example	
	OR	
Q12 a	a) Describe in detail Chomsky Hierarchy and context-sensitive languages.	[8]
	b) Explain in detail the "Halting problem"	[6]
	c) Define undecidability	[2]

www.sppuonline.com